Math 970 Homework # 5

Due: Oct. 9

- 22. Show that if X is a space with topology generated by a basis \mathcal{B} , then X is Hausdorff if and only if for every $x, y \in X$ with $x \neq y$, there are $B, B' \in \mathcal{B}$ with $x \in B$, $y \in B'$ and $B \cap B' = \emptyset$.
- 23. Show that if \mathcal{T} is the usual topology on \mathbb{R} , the space $X = \mathbb{R} \cap \{*\}$, with topology generated by the basis $\mathbb{B} = \mathcal{T} \cup \{(U \setminus 0) \cup \{*\} : U \in \mathcal{T} \text{ and } 0 \in U\}$ is not Hausdorff, but every one-point subset of X is closed. [FYI: X is called the *line with two origins*.]
- 24. Show that the line with two origins is the quotient of two disjoint copies of \mathbb{R} (think: $\mathbb{R} \times \{0,1\}$). Conclude that the quotient of a Hausdorff space need not be Hausdorff.
- 25. Show that the quotient space obtained by the equivalence relation \sim on $[0,1] \times [0,1]$ generated by (i.e., add $a \sim a$, and $a \sim b$ whenever $b \sim a$, and any relation that transitivity would *force* on you)

 $(0,y)\sim (1,y)$ for all $y\in [0,1]$ and $(x,0)\sim (x,1)$ for all $x\in [0,1]$ admits a continuous bijection to $S^1\times S^1$.

26. Find an example of subspaces $A, B \subseteq \mathbb{R}$ (giving \mathbb{R} the usual topology) for which there is a continuous bijection

$$f:A\to B$$

whose inverse is **not** continuous.