Math 970 Homework # 4

Due: Oct. 2

- 17. For $A, B \subseteq X$ with (X, \mathcal{T}) a topological space, if A is open in X and B is closed in X, then $A \setminus B$ is open and $B \setminus A$ is closed.
- 18. Show that if $A, B \subseteq X$, then
 - (a) $\overline{A \cup B} = \overline{A} \cup \overline{B}$
 - (b) $\overline{A \cap B} \subseteq \overline{A} \cap \overline{B}$, but that equality does not hold in general,
 - (c) $\overline{A \setminus B} \supseteq \overline{A} \setminus \overline{B}$, but that equality does not hold in general.
- 19. Show that if $A \subseteq X$ and X has two topologies $\mathcal{T} \subseteq \mathcal{T}'$, then if $x \in X$ is a limit point of A w.r.t. \mathcal{T}' , then it is a limit point of A w.r.t. \mathcal{T} .
- 20. Show that if $A_i \subseteq X_i$ for all $i \in I$, then

$$\overline{\prod_i A_i} = \prod_i \overline{A_i} \subseteq \prod_i X_i$$
 for both the product and box topologies.

- 21. Find the closure of the set $(0,1) \subseteq \mathbb{R}$, when \mathbb{R} has the
 - (a) finite complement topology
 - (b) infinite (open) ray to the right topology
 - (c) discrete topology
 - (d) lower limit topology, generated by the basis $\mathcal{B} = \{[a, b) : a, b \in \mathbb{R}\}$