Math 970 Homework

Due: Sept. 18

1. If (X, \mathcal{T}) is a topological space, Y is a set, and $f: X \to Y$ is a function, show that $\mathcal{T}' = \{\mathcal{U}' \subseteq Y : f^{-1}(\mathcal{U}') \in \mathcal{T}\}$

is the finest topology on Y for which $f:(X,\mathcal{T})\to (Y,\mathcal{T}')$ is continuous. (Note that this problem is actually asking you to show three things...)

- 2. If (X, \mathcal{T}) is a topological space, and $A \subseteq X$, then $A \in \mathcal{T}$ if and only if for all $x \in A$, there is a $U \in \mathcal{T}$ so that $x \in U \subseteq A$
- 3. Show that $\mathcal{B} = \{(a, \infty) \times (b, \infty) : a, b \in \mathbb{R}\}$ is a basis for a topology \mathcal{T} on $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$, which is coarser than the usual Euclidean topology on \mathbb{R}^2 . Show that $\mathcal{B}' = \{[a, \infty) \times [b, \infty) : a, b \in \mathbb{R}\}$ is a basis for a topology \mathcal{T}' which is strictly finer than \mathcal{T} , and not comparable to the usual Euclidean topology.
- 4. Show that, in general, if \mathcal{B} and \mathcal{B}' are both bases for topologies on X, that $\mathcal{B} \cap \mathcal{B}'$ and $\mathcal{B} \cup \mathcal{B}'$ need not be. Show, however, that $\mathcal{B}'' = \{B \cap B' : B \in \mathcal{B}, B' \in \mathcal{B}'\}$ is a basis for a topology, and $\mathcal{T}(\mathcal{B}'')$ is the coarest topology containing both \mathcal{B} and \mathcal{B}' .
- 5. Show that the topology generated by a basis \mathcal{B} is the coarsest topology <u>containing</u> \mathcal{B} (i.e., it is the intersection of all such topologies).