Math 970 Homework

Due:

(Fill in the date!)

1. Show that if $f:X\to Y$ is a function, then the inverse image of subsets of Y satisfies:

(a)
$$f^{-1}(\bigcup_{i \in I} \mathcal{U}_i) = \bigcup_{i \in I} f^{-1}(\mathcal{U}_i)$$

(b)
$$f^{-1}(\bigcap_{j \in J} \mathcal{V}_j) = \bigcap_{j \in J} f^{-1}(\mathcal{V}_j)$$

(c)
$$f^{-1}(Y \setminus B) = X \setminus f^{-1}(B)$$

- 2. With notation as in problem # 1, show, by contrast, that some of the corresponding results for the *image* of subsets of X do *not* hold in general. Under what conditions of the function f would each property that fails actually hold true?
- 3. Show that if $f:(X,d) \to (Y,d')$ is a function between metric spaces which satisfies, for some $K \in \mathbb{R}$, $d'(f(x),f(y)) \leq K \cdot d(x,y)$ for all $x,y \in X$, then f is continuous. In particular, if f decreases distances, then f is continuous.
- 4. Show that the metrics d_1 and d_2 on \mathbb{R}^n satisfy

$$d_2(\vec{x}, \vec{y}) \le d_1(\vec{x}, \vec{y}) \le n \cdot \max\{|x_1 - y_1|, \dots |x_n - y_n|\} \le n \cdot d_2(\vec{x}, \vec{y})$$

Conclude that d_1 and d_2 give the same open sets for \mathbb{R}^n .

5. Show that if (X, d) is a metric space, then (X, \bar{d}) , where

$$\bar{d}(x,y) = \min\{d(x,y), 1\}$$

is also a metric space, with the *same* open sets as (X, d).