
Computing homology groups: Computing simplicial homology groups for a fi-
nite ∆-complex is, in the end, a matter of straightforward linear algebra. First the
punchline! Start with the chain complex

· · · → Cn+1(X)
∂n+1→ Cn(X)∂n→Cn−1(X) → · · ·

for the simplicial homology of a finite ∆-complex X, with matrices ∆n representing
the boundary maps ∂n (in the standard bases given by the (n + 1)- and n-simplices).
We can, by row and column operations over Z (that is, we add integer multiples of a
row or column to another, permute rows or columns, and multiply a row or column
by −1) put the matrix ∆n = (dij) into Smith normal form An = (aij), which means
that its entries are 0 except along the “diagonal” aii = bi; and further, bi|bi+1 for all
i (where everything is assumed to divide 0 and 0 divides only 0). We sketch the proof
below.

Then if we let Mn = the number of columns of zeros of An and mn = the number
of non-zero rows of An+1 [note the change of subscript!], and b1, . . . bk the non-zero
diagonal entries of An+1 [note that mn = k], then

Hn(X) ∼= Z
Mn−mn ⊕ Zb1 ⊕ · · · ⊕ Zbk

The point is that the matrices An are representatives of the boundary maps ∂n, with
respect to some very carefully chosen (and compatible) bases for Cn(X). Essentially,
Zn(X) ∼= ZMn with basis the last Mn elements of our basis for Cn(X), and
Bn(X) ∼= b1Z ⊕ · · · ⊕ bkZ, mapping into the last k coordinates.



Specifically, we show that we can decompose each Cn(X) = Un ⊕ Vn ⊕ Wn, where
Zn(X) = {0} ⊕ Vn ⊕ Wn (so ∂n is injective on Un), and ∂n(Un) ⊆ Wn−1 (with finite
index). Furthermore, we may choose bases so that the matrix of ∂n+1 : Un+1 → Wn is
the diagonal matrix diag(b1, . . . , bk). Note that, choosing bases for the Vn to fill out
a basis for Cn(X) (using the bases for Un and Wn implied by the above statement),
the matrix for ∂n+1 has the block form consisting of all 0’s, except for the “Un+1

to Wn” part, which is the diagonal matrix. (This is a slightly permuted version of
Smith normal form.) Then

Bn(X) =im(∂n+1) = b1Z ⊕ · · · ⊕ bkZ ⊆ {0} ⊕ Wn ⊆ Vn ⊕ Wn

so Hn(X) = Zn(X)/Bn(X) ∼= (Vn⊕Wn)/({0}⊕b1Z⊕· · ·⊕bkZ) ∼= Vn⊕Zb1⊕· · ·⊕Zbk
.

The dimension of Vn can be determined from the normal forms of ∂n+1 and ∂n as
dim(Vn) = dim(Vn ⊕Wn)− dim(Wn) = dim(Zn(X))− dim(Un+1) = number of non-
pivot columns of ∂n − number of pivot rows of ∂n+1 = number of zero columns of
An − number of non-zero rows of An+1, as desired.

It remains only to show that the matrices ∆n can be put into Smith normal form,
and that this implies the existence of the decompositions of Cn(X) as described. The
basic idea is that row and column operations on a matrix can really be interpreted as
choosing different (ordered) bases for the domain or codomain, to describe a linear
transformation L : V → W . Working with integer matrices and operations over Z

means that we can work with bases of Z
n. Since Lui =

∑
j aijwj for bases {ui} and

{wj}, interchanging rows or columns corresponds to interchanging basis elements in
W or V , repsectively (to make the actual vectors described by the summation remain
the same). Multiplication of a row or column by −1 multiplies the corresponding



basis element by −1. And adding a multiple m of one row, k, to another, � amounts
to replacing the basis vector u� with u� +muk (since the new row describes, in terms
of the wj , the image of that vector in V ); adding a multiple m of one column k to
another, �, is reflected in the bases as
ai1w1 + · · · + aimwm = ai1 + · · · aik(wk − mw�) + · · · + (ai� + maik)w� + · · · + aimwm

so it can be interpreted as a change of basis in the codomain.

Using these operations to arrive in Smith normal form is a fairly straighforward
matter of induction. Given an integer matrix A = (aij), Let N(A) be the minimum,
among all non-zero entries of A, of their absolute value. If |aij | = N(A) does not
divide some entry akl = b of A, we can by row and column operations decrease N(A).
If i = k or j = �, then adding the right multiple of the column or row containing aij

to the one containing b will yield the remainder of b upon division by aij in b’s place,
lowering N(A). Otherwise, we may assume that both ai� = αaij and akj = βaij , and
then adding 1 − α times the i-th row to the k-th yields a row with aij in the j-th
spot and ak� + (1 − α)βaij in the �-th, which aij still doesn’t divide. Then we apply
the previous operation to reduce N(A).
Since this cannot continue indefinitely [N(A) ∈ Z

+], eventually N(A) = |aij | does
divide every entry of A. By swapping rows and columns, we may assume that N(A) =
|a11|, and then by row and column operations we can zero out every other entry in
the first row and column. Striking out this row and column, we have a minor matrix
B satisfying N(A)|N(B). Note that then this will remain true under any subsequent
row or column operation on B. By induction, there are row and column operations
for B (which we interpret as operations on A not using the first row or column)



putting B into Smith normal form; essentially, we just continually use the process
above on smaller and smaller matrices. Since N(A)|N(B) at the start, this remains
true throughout the row and column operations, so each diagonal entry divides the
ones that come later. All other entries are eventually zeroed out.

After we have put our matrices representing the boundary maps ∂n into Smith normal
form, this provides us with bases {un

i }, {wn−1
j } for Cn(X) and Cn−1(X) so that

∂nun
i = bi,nwn−1

i for i ≤ kn and ∂nun
i = 0 for i > kn. In order to make these bases

“compatible”, as we desire, we need to use the fact that ∂n ◦ ∂n+1 = 0. We may
assume that bi,n �= 0 for all i ≤ kn (otherwise we just shift kn).
The point is that ∂n+1u

n+1
i = bi,n+1w

n
i implies that 0 = ∂n∂n+1u

n+1
i = bi,n+1∂nwn

i ,
so ∂nwn

i = 0 for every i ≤ kn (since bi,n+1 �= 0). Also, ∂n is injective on the span of
un

1 , . . . , un
kn

, since their images, bi,nwn
i , are linearly independent (as non-zero multi-

ples of basis elements). This also means that they span a subspace complementary
to Zn(X). We therefore wish to choose {un

i : 1 ≤ i ≤ kn} as our basis for Un and
{wn

j : 1 ≤ j ≤ kn+1} as our basis for Wn, and show that this can be extended to
a basis for Cn(X) by choosing vectors lying in Zn(X); the added vectors will be a
basis for Vn. Once we do this, we know that in these bases our boundary maps will
have the form we desire, since the added vectors vk map to 0 under ∂n, as do the wn

j

we’ve kept, and ∂nui = bi,nwn−1
i . For notational convenience in what follows, we will

denote the vectors ui, wj that we have elected not to keep for our basis by u′
i, w

′
j .



To finish building our basis for Cn(X) we essentially need to show that the span
Wn of the wj ’s form a direct summand of Zn(X) = ker(∂n), that is, the wj form
the subset of some basis for Zn(X). To show that Wn is a summand, we show that
Qn = Zn(X)/Wn is a free abelian group; choosing a basis {vk + Wn} for Qn, it then
follows that {vk} ∪ {wj} is a basis for Zn(X); given z ∈ Zn(X), z + Wn can be
expressed as a combination of the vk + Wn; z minus that combination therefore lies
in Wn, so is a combination of the wj . That shows that they span. Writing 0 as a
linear combination and then projecting to Qn shows that the coefficients of the vk are
0 (since the vk +Wn are linearly independent in Qn), and so the coeficients of the wj

are zero (since the wj are linearly independent in Wn), proving linear independence.

And to show that Qn = Zn(X)/Wn is a free abelian group, since it is finitely gener-
ated, it suffices to show that it contains no torsion elements. That is, if z ∈ Zn(X)
and cz ∈ Wn for some c �= 0, then z ∈ Wn. But this is immediate, really; expressing
z =

∑
ciwi +

∑
c′iw

′
i (which is unique, since the wi, w

′
i form a basis for Cn(X)), then

cz =
∑

cciwi +
∑

cc′iw
′
i ∈ Wn implies that the cc′i = 0 (since this expression is still

unique and the wi form a basis for Wn), so the c′i = 0 and z =
∑

ciwi ∈ Wn, as
desired.

The fact that the ui and Zn(X) (hence the ui and the basis {vk, wj} for Zn(X))
span Cn(X) follows from the fact that the u′

i all lie in Zn(X). This implies that
Cn(X) ∼=span{ui}⊕span{vk}⊕span{wj}, finishing our proof.


