
Math 871 Exam 2 Topics, PART 1 (the point-set part)

Compactness. The topologcal property behind the Extreme Value Theorem

Same idea: what would make EVT fail? f : X → R (Think maximum.) Either f has no upper
bound, or its image has a (least) upper bound that is not achieved. Either, taking inverse
images, leads to a collection of nested open sets whose union is X , but none of them is X .
This leads to:

An open covering of a topological spac X is a collection of open sets Uα whose union is X .

(X,T) is compact (cpct) if every open covering {Uα}α∈I has a finite subcover(ing): a finite
collection J ⊆ I so that {Uβ}β∈J is also an open covering of X .

Compact subset A ⊆ X : (A,TA) is a cpct space.

Topologist’s EVT: If f : (X,T) → (R, usual) is cts and X is cpct, then there are a, b ∈ X so
that f(a) ≤ f(x) ≤ f(b) for all x ∈ X .

‘Real’ Topologists EVT: if f : (XT) → (Y,T′) is cts and X is cpct, then f(X) ⊆ Y is a cpct
subset of Y .

A closed subset of a compact set is compact.

A compact subset of a Hausdorff space is closed.

Consequence:
If f : X → Y is a cts bijection, and X is cpct while Y is Hausdorff, then f is a homeomor-
phism.

This is generally our favorite way, for example, to identify a space as a quotient of another
space; f : X → Y cts and surjective, with X cpct and Y Hausdorff, then the quotient space
X/ ∼ where x ∼ y iff f(x) = f(y), is homeomorphic to Y .

X and Y cpct, then X × Y is cpct.

If Xα are compact for all α, then
∏

Xα is compact, using the product topology. [This is a
deep result...]

A finite union of compact subsets is compact.

Closed set formulation: take complements! A collecction Aα of subsets of X has the finite
intersection property (FIP) if the intersection of any finite number of the Aα is non-empty.

X is cpct⇔ for any collection {Cα} of closed subsets ofX that has the FIP, we have
⋃

αCα 6= ∅.

This is often treated as a method for locating ‘interesting’ points: in a cpct space X if you
can satisfy any finite number of a collection of ‘closed’ conditions (the pts satisfying each
condition form a closed subset) then you can simultaneously satisfy all of them.

Alternate notions: In any cpct space, every infinite subset has a limit point.

(X,T) is limit point compact if every infinite subset of X has a limit point.

limit pt cpctness does not imply cpctness. Limit pt cpctness is not preserved under cts image.
For metrizable spaces X (those whose open sets can be defined by a metric), X is cpctness
⇔ X is limit pt cpct.

Nets:
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A sequence in X is a function f : Z+ → X ; f(n) = xn ∈ X . A sequence converges xn → x if
for all x ∈ U ∈ X , U ∈ T, there is an N ∈ Z+ so that n ≥ N ⇒ xn ∈ U .

If f : X → Y is cts and xn → x in X , then f(xn) → f(x) in Y . But in like in analysis/Rn,
the converse is not true; convergence of sequences is not good enough to imply continuity.

A net in X is a collection of points indexed by a directed set (D,≥) [a ≥ b and b ≥ c implies
a ≥ c], where for all a, b ∈ D there is a d ∈ D so that d ≥ a, d ≥ b

Model: all U ∈ T with x ∈ U , where U ≥ V means V ⊆ U (reverse inclusion)

A net {xi}i∈D in X converges if there is an x ∈ X so that x ∈ U ∈ T implies there is a d ∈ D
so that i ≥ d ⇒ xi ∈ U . [Write xi → x]

If f : X → Y is cts and xi → x in X , then f(xi) (is a net in Y , with the same index set and)
converges to f(x).

But the converse is now true: if the image under f of every convergent net is a convergent net,
then f is continuous.

Also: a space X is cpct ⇔ Every net in X has a convergent subnet [a subnet must be cofinal:
it is defined by a subset E ⊆ D so that for all d ∈ D there is some e ∈ E with e ≥ d.]
The corresponding statement for sequences/subsequences is false (but they do characterize
cpctness for metrizabe spaces).

Countability and separation properties.

Idea: other useful properties that R has that we might like (X,T) to have.

(X,T) is separable if there is a countable subset A ⊆ X with A = X [A is dense in X ].

(X,T) is second countable if T = T(B) for some countable basis B ⊆ T.

(X,T) is first countable if for every x ∈ X there are {Un}n∈Z+
⊆ T so that x ∈ U ∈ T implies

x ∈ Un ⊆ U for some n. [Each point has a countable neighborhood basis.]

(X,T) metrizable implies first ctble.

(X,T) second ctble ⇒ (X,T) separable, (X,T) first ctble.

In general, separable and first ctble do not imply second ctble.

Subspace of first ctble is first ctble; subspace of second ctble is second ctble.

Separation properties: T1 (points are closed) and T2 = Hausdorff we have met already.

A space (X,T) is T3 if for every C ⊆ X closed and x ∈ X with x 6∈ C, there are U, V ∈ T so
that x ∈ U , C ⊆ V , and U ∩ V = ∅.

A space (X,T) is T4 if for every C,D ⊆ X closed with C ∩D = ∅, there are U, V ∈ T so that
C ⊆ U , D ⊆ V , and U ∩ V = ∅.

(X,T) is regular if it is T1 and T3; (X,T) is normal if it is T1 and T4.

normal ⇒ regular ⇒ Hausdorff ⇒ T1

(X,T) metrizable implies that X is normal.

(X,T) compact and Hausdorff implies that (X,T) is normal.

(X,T) regular and second ctble implies that (X,T) is normal.

Alternate forms:

(X,T) is regular ⇔ X is T1 and whenever x ∈ U ∈ T, there is a V ∈ T with x ∈ V ⊆ V ⊆ U .
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(X,T) is normal ⇔ X is T1 and whenever C ⊆ U ∈ T with C closed, there is a V ∈ T with
C ⊆ V ⊆ V ⊆ U .

The cartesian product of regular spaces is regular; this is not true for normal spaces (and
normality).

(X,T) is metrizable, then X is normal and first countable; these are necessary. What is
sufficient?

Urysohn Metrization Theorem: If (X,T) regular and second countable, then [(X,T) is normal
and] (X,T) is metrizable.

The idea: build an embedding X →֒
∏

n∈Z+
R, so X is a subspace of a metrizable space, hence

metrizable. Key ingredient:

Urysohn’s Lemma: If (X,T) is normal then for A,B ⊆ X closed with A ∩ B = ∅, there is a
cts f : X → [0, 1] so that f |A = 0 and f |B = 1.

So second ctbility, in addition to normality, is sufficient; but there are non-second-countable
metric spaces (uncountable set, discrete topology!).

Smirnov metrizability: (X,T) is metrizable ⇔ X is Hausdorff, paracompact, and locally
metrizable.

Nagata-Smirnov metrizability: (X,T) is metrizable ⇔ X is regular and has a σ-locally-finite
basis for the topology.

Paracompact = every open covering has a locally finite refinement. Refinement = an open
covering each of which is a subset of one of the original covering. Locally finite = every point
as a neighborhood meeting only finitely many of the sets. σ-locally-finite = is a countable
union of locally finite collections.

Local properties: nearly every one of the properties we have studied has a “local” version
(essentially, it hold for some open subset of a point).

Locally connected: Given x ∈ U ∈ T, there is a V ∈ T with x ∈ V ⊆ U and V is connected.

Locally path connected: Given x ∈ U ∈ T, there is a V ∈ T with x ∈ V ⊆ U and V is path
connected.

Locally compact: Given x ∈ X , there is a U ∈ T and C ⊆ X compact, so that x ∈ U ⊆ C.

All of these are topological properties, and they typically allow us to leverage the useful
properties that follow from connectedness/path connectedness/compactness to more general
settings. [Think: R is not cpct, but it is locally cpct.]

Homotopy Theory.
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