
Math 871 Exam 1 Topics

Starting point: continuity
f : R → R is continuous at x0 if |f(x)− f(x0)| is small so long as |x− x0| is small enough.
Goal: make this notion make sense more generally, and determine what makes the fundamental
results (extreme value theorem, intermediate value theorem) work.

Two ideas help: a neighborhood of x is one which contains all points ‘close enough’ to x. The
inverse image of a set is the collection of points that the function f maps into x. Then:
continuity at x means that the inverse image of a neighborhood of f(x) is a neighborhood
of x.

Images and inverse images.
Given f : X → Y a function, and A ⊆ X , B ⊆ Y , we have images f(A) = {f(x) : x ∈ A}
and inverse images f−1(B) = {x ∈ X : f(x) ∈ B}

Inverse images are very well-behaved! f−1(∩αBα) = ∩αf
−1(Bα) , f

−1(∪αBα) = ∪αf
−1(Bα) ,

f−1(Y \B) = X \ f−1(B) .
But inages are not as well-behaved: f(∪αAα) = ∪αf(Aα) , but only f(∩αAα) ⊆ ∩αf(Aα) in
general.

Finite/countable/uncountable sets.
A set S is finite if for some n ∈ Z+ there is a bijective function S ↔ {1, . . . , n}
Equivalently, for some n, {1, . . . , n} ։ S , or S →֒ {1, . . . , n} .
Some results: if A,B are finite, then A ∪ B, A× B, and the set of all functions {f : A → B}
are finite.

If B is finite and A ⊆ B then A is finite.
Countably infinite: there is a bijection S ↔ Z+.
Countable: finite or countable infinite. Equivalently, there exists a surjection Z+ ։ S, or
there exists an injection S →֒ Z+.

Infinite: not finite! Equivalently, there is an injection Z+ →֒ S (or a surjection S ։ Z+)
Uncountable: not countable! Equivalently, there is no surjection Z+ ։ S (or no injection
S →֒ Z+).

Examples: R , or all functions f : Z+ → {0, 1} (note: the second is equivalent to all subsets
of Z+, via f ↔ f−1({0}))

Back to continuity.
Given a metric on a set X
[a function d : X ×X → R with, for all x, y, z ∈ X , (1) d(x, y) ≥ 0, and d(x, y) = 0 iff x = y,
(2) d(x, y) = d(y, x), and (3) d(x, z) ≤ d(x, y) + d(y, z)]

We can formalize continuity at x0 ∈ X using neighborhoods Nd(x0, ǫ) = {x ∈ X : d(x0, x) <
ǫ}; we need f−1(Nd′(f(x0), ǫ)) contains some Nd(x0, δ). But more; since x ∈ Nd(x0, ǫ)
implies that Nd(x, ǫ − d(x, x0)) ⊆ Nd(x0, ǫ), we have that x ∈ f−1(Nd′(f(x0), ǫ)) implies
that Nd(x, δ) ⊆ f−1(Nd′(f(x0), ǫ)) for some δ > 0. That is, f−1(Nd′(f(x0), ǫ)) is, for every
x0 ∈ X , a union of neighborhoods.

This leads to: U ⊆ X is open if it is a union of neighborhoods. And f : X → Y is continuous
if f−1(V ) is open (in X) for every V ⊆ Y open (in Y ). And we just eliminated (explicit)
mention of a point; continuity ‘at’ x0 has been eliminated, leaving just ‘continuity’.

1



Topologies.
Looking at what properties open sets in a metric space have leads us to the notion of a topology
on a set X : it is a collection T of subsets of X so that

(1) ∅, X ∈ T

(2) if Uα ∈ T for all α, then ∪αUα ∈ T

(3) if U, V ∈ T then U ∩ V ∈ T

And a function f : (X,T) → (Y,T′) between topological spaces (i.e., sets with particular
topologies) is continuous (cts) if f−1(V ) ∈ T for every V ∈ T

′.
Constant maps are always cts; compositions of cts maps are cts.

Examples.
X = any set, T = P(X) - all subsets of X , the discrete topology.
X = any set, T = {∅, X}, the indiscrete (or trivial) topology.
X = any set, Tf = {A ⊆ X : X \ A is finite} ∪ {∅}, the finite complement topology.
X = any set, Tc = {A ⊆ X : X \ A is countable} ∪ {∅}, the countable complement topology.
X = any set, a ∈ X , Tip = {A ⊆ X : a ∈ A} ∪ {∅}, the included point topology.
X = any set, a ∈ X , Tip = {A ⊆ X : a 6∈ A} ∪ {X}, the excluded point topology.
X = R, Tirr = {(a∞)} ∪ {∅,R}, the infinite ray (to the right) topology.
X = any metric space,Td = {all unions of d-neighborhoods in X} = {∪iNd(xi, ǫi) : xi ∈
X, ǫi > 0}, the metric topology.

T,T′ topologies on X , with T ⊆ T
′, we say T is coarser/smaller than T

′, and T
′ is finer/larger

than T.
Basic idea: coarser ⇒ more cts functions into X (fewer inverse image to check), finer ⇒ more
cts functions out of X (more likely to contain the inverse images).

f : (XT) → Y . T′ = {V ⊆ Y : f−1(V ) ∈ T} is the finest topology on Y making f cts.
g : X → (Y,T′). T = {f−1(V ) : V ∈ T

′} is the coarsest topology on X making f cts.
A set U ⊆ X is open ⇔ for every x ∈ U there is Ux ∈ T with x ∈ Ux ⊆ U . [Note: if you know
U is open, Ux = U works!]

Bases/subbases.
Metric topologies are defined as unions of neighborhoods. What makes this a topology?
A basis B for a topology on X is a collection of subsets so that
(1) union of elements of B is X [every x ∈ X lies in some B ∈ B]
(2) the intersection of two is a union of elements of B [if B,B′ ∈ B and x ∈ B ∩ B′ then
x ∈ B′′ ⊆ B ∩B′ for some B′′ ∈ B]

T(B) = unions of elements of B = the topology generated by B, the coarsest toplology con-
taining B

f : (X,T) → (Y,T(B)) is cts ⇔ f−1(B) ∈ T for all B ∈ B

Examples:
B = {(a, b) ⊆ R : a, b ∈ R} is a basis for the usual topology on R; restrict to a, b ∈ Q, still a
basis for usual topology.

B = {[a, b) ⊆ R : a, b ∈ R} is a basis; Tℓ = T(B) = the lower limit topology on R. Strictly
finer than the usual topology!

Subbasis S: insist only on (1) union of elements of S is X .
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B = B(S) = {S1 ∩ · · · ∩ Sn : n ∈ Z+, Si ∈ S} is a basis; T(S) = T(B) = topology generated
by S.

Detecting bases: If B ⊆ T and T ⊆ T(B), then T = T(B)

Product topologies.
(X,T), (Y,T′) top spaces, then B = T × T

′ (subsets of X × Y ) is not a topology, but it is
a basis for one (closed under intersection). T(T × T

′) = (abusing notation ‘T × T
′’ is the

product topology on X × Y .
Motivation: want projection maps pX : X × Y → X , pX(x, y) = x, etc. continuous! This
forces topology on X × Y to contain certain sets, coarsest topology that contains them is
product topology.

If T = T(B), T′ = T(B′), then B × B
′ is a basis for the product topology.

Example: product topology on R2, Rn. Same as the (usual) metric topologies!
Arbitrary products: two choices!

∏
i Xi, coarsest topology making all projections cts is the

product topology, it has subbasis {p−1
Xi
(U) : i ∈ I, u ∈ Ti} (basis is

∏
i Ui, where all but

finitely many Ui are Xi).
Box topology: basis is {

∏
i Ui : Ui ∈ Ti}; all factors can be proper open sets.

If I is infinite, box topology is (generally) strictly finer than product topology
Recognizing cts fcns: f : (X,T) → (

∏
i Xi, prod top) is cts ⇔ pXi

◦ f : X → Xi is cts for all i.
This is not true if

∏
i Xi is given the box topology!

Subspaces.
Motivation (X,T) and A ⊆ X , would be useful if inclusion map ι : A →֒ X is cts.
TA = {A∩U : U ∈ T} is a topology on A, the coarsest making ι cts (A∩U = ι−1(U)), called
the subspace topology on A.

f : (X,T) → (Y,T′) cts and A ⊆ X , then f ◦ ι = f |A : (A,TA) → (Y,T) is cts
T = T(B), then BA = {A ∩B : B ∈ B} is a basis for TA
A ⊆ X , B ⊆ Y , then A × B ⊆ X × Y , and the subspace topology on A × B is the same as
the product of the subspace topologies (same bases!)

Subtlety: f |A : A → Y cts means A∩ f−1(U) is open in A, i.e., A∩ f−1(U) = A∩ V for some
V open in X . [I.e., f |A can be cts when f isn’t!]

Closed sets.
(X,T) top space, C ⊆ X is closed (w.r.t. T; omitted if clear from context) if X \ C ∈ T.
[Equivalently, C = X \ U for some U ∈ T]

Ci closed ⇒ ∩iCi closed; C,D ⊆ X closed ⇒ C ∩D closed.
One can cast everything about a topology in terms of closed sets; e.g., a fcn f : X → Y is cts
⇔ f−1(C) ⊆ X is closed for evvery c ⊆ Y closed.

C ⊆ X , D ⊆ Y both closed ⇒ C ×D ⊆ X × Y is closed. (⇐ requires both sets non-empty)

Closure.
C ⊆ A ⊆ X is closed in (A,TA) ⇔ C = A ∩D for D ⊆ X closed.
Closed sets are closed (no put intended) under intersection, so can (usually) find a smallest
closed set satisfying a property, as ∩{closed sets with ppty}

Open set closed under union, so can find largest open set with a property.
Example: A ⊆ X , the closure of A in X = A = clT(A) = ∩{C ⊆ X closed : A ⊆ C} =
smallest closed set containing A
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Interior of A = int(A) = intT(A) = ∩{U ⊆ X : U ∈ T, U ⊆ A}
x ∈ A ⇔ x ∈ C for every closed C with A ⊆ C ⇔ whenever U ∈ T and x ∈ U we have
A ∩ U 6= ∅

x is a limit point of A if whenever U ∈ T and x ∈ U we have (A\{x})∩U 6= ∅, i.e., x ∈ A \ {x}.
The set of limit points of A is denoted A′. So A = A ∪ A′; A is closed ⇔ A′ ⊆ A
If B ⊆ A ⊆ X , then clA(B) = A ∩ clX(B). If A ⊆ X and B ⊆ Y , then clX×Y (A × B) =
clX(A)× clY (B).

For any A ⊆ X , cl(int(cl(int(A)))) = cl(int(A)). This is the main ingredient in the “14 Set
Theorem”: at most 14 distinct set can be constructed from A using a combination of closure
and complement. [X \ cl(X \ A) = int(A)]

For f : X → Y cts, f−1(A) ⊆ f−1(A), and f is cts ⇔ f(A) ⊆ f(A) for every subset A ⊆ X .

Building continuous functions.
f : X → Y , X = ∪iUi with Ui ∈ T for all i, then f is cts ⇔ f |Ui

is cts for all i.
Reverse: (Pasting Lemma) If X = ∪iUi with Ui open, and fi : Ui → Y are cts for all i,
and fi = fj on Ui ∩ Uj for all i, j, then f : X → Y defined by f(x) = fi(x) if x ∈ Ui is
(well-defined and) cts.

Closed set version: If f : X → Y X = C1 ∪ · · · ∪ Cn with Ci closed for all i, then f is cts ⇔
f |Ci

is cts for all i.
Reverse: (‘Other’ Pasting Lemma) If X = C1 ∪ · · · ∪ Cn with Ci closed for all i, fi : Ci → Y
are cts for all i, and fi = fj on Ci ∩ Cj for all i, j, then f : X → Y defined by f(x) = fi(x)
if x ∈ Ci is (well-defined and) cts.

Homeomorphisms.
For fcns on R, we have the Inverse Function Theorem: a cts bijection f : R → R has contiuous
inverse. But for topological spaces, this does not hold!

Example: X = Z, T = {A ⊆ Z : A ⊆ Z+ or A = Z}, then f : X → X given by f(x) = x− 1
is a cts bijection, but f−1(x) = x+ 1 is not cts.

A homeomorphism is a cts bijection f : (X,T) → (Y,T′) such that the inverse g = f−1 :
(Y,T′) → (X,T) is also cts. I.e., f is a bijection so that V ∈ T

′ ⇔ f−1(V ) ∈ T. We write
X ∼= Y (if the topologies are understood).

Examples: R ∼= (0, 1) ∼= (a, b) ∼= (a,∞) ∼= (−infty, a). [0, 1] ∼= [a, b]
A homeo therefore gives a bijection not only of the points of X and Y , but also of their open
sets (via inverse images). Consequently, any property that can be expressed in terms of
points and open (or closed) sets which is true for one of X and Y must be true for the other.
Such properties are called topological properties.

A topological property is one that is preserved by homeomorphisms.
Examples.
(X,T) is T1 if every 1-point set {x} is closed.
(X,T) is T2 or Hausdorff (Hdf?) if for every pair of points x, yinX , if x 6= y then there are
U, V ∈ T with x ∈ U , y ∈ V , and U ∩ V = ∅. [Points can be separated using disjoint open
sets.]

T2 implies T1; Metric topologies are Hausdorff.
(X,T) is path connected if for every x, y ∈ X there is a path, a cts fcn γ : ([0, 1], usual) → (X,T)
so that γ(0) = x and γ(1) = y.
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A set A ⊆ X is dense if A = X . A space X is separable if it contains a countable dense subset.
[For example, (R, usual) is separable; Q is dense.]

A space is second countable if its topology can be generated by a basis consisting of countably
many sets. [For example, (R, usual) is 2nd ctble.]

At its heart, topology is the study of topological properties!, and the relationships between
them.

Restriction of range: if f : (X,T) → (Y,T′) is continuous, and f(X) ⊆ B ⊆ Y , then f ,
thought of as a function f :: (X,T) → (B,T′

B), is also continuous.
A topological embedding (or imbedding) is an injective cts map f : (X,T) → (Y,T′) so that,
restricting the range, f : (X,T) → (f(X),T′

f(X)) is a homeomorphism.

Quotient spaces.
We have seen, for f : (X,T) → Y , there is a finest topology on Y to make it cts: T′ = {V ⊆
Y : f−1(V ) ∈ T}. This topology is especially important/useful when f is surjective:

A quotient map is a surjective fcn f : (X,T) → (Y,T′) with V ∈ T
′ ⇔ f−1(V ) ∈ T.

U = f−1(V ) is called a saturated set; U contains every inverse impage that it meets. A
surjective f is a quotient map ⇔ it is continuous and the image of every saturated open set
in X is open in Y [the point: f surjective means that f(f−1(V )) = V ].

Using closed sets (i.e., complements), quotient maps are also the surjective cts maps for which
the image of every saturated closed st is closed.

So for example, a cts, open (the image of every open set is open) surjective function is a
quotient map. And a cts closed (the iage of every closed set is closed) surjective function is
a quotient map.

So the projection maps pXj
:
∏

i Xi → Xj are quotient maps (they are cts open surjections).
Given a top space (X,T), an equivalence relation ∼ on X [reflexive, symmetric, transitive]
has a collection X/ ∼= Y of equivalence classes [x] = {y ∈ X : x ∼ y}, and a surjective
function q : X → Y = X/ ∼. Giving Y the topology T

′ = {V ⊆ Y : q−1(V ) ∈ T} makes
q a quotient map; we call T′ the quotient topology on Y (induced from q). Viewing ∼ as
describing how to glue pieces of X together, this construction is a ‘standard’ way to build
topological spaces.

E.g., on X = [0, 1], the equivalence relation x sin y if x = y or {x, y} = {0, 1} ‘glues’ the ends
of the interval together, and (we shall see!) yields a quotient space homeomorphic to the
unit circle in R2.

Building cts fcns, II: If q : (X,T) → (Y,T′) is a quotient map and f : (X,T) → (Z,T′′) is
cts, satisfying q(x) = q(y) implies f(x) = f(y), then there is an induced map f : (Y,T′) →
(Z,T′′), defined by f([x]) = f(x), and f is continuous.

So, for example, the map f : [0, 1] → S1 ⊆ R2 given by f(t) = (cos(2πt), sin(2πt)), respects
the equivalence relation above, and so induces a cts (bijection) f : [0, 1]/ ∼→ S1. (We will
eventually see that this is a homeo!)

Most of our ‘interesting’ topological spaces will be built as quotient spaces, and we will recog-
nize what they are by building maps along the lines above.

BUT: quotient maps do not behave well under most of our constructions. The composition of
two quotient maps is a quotient map. But the restriction of a quotient map to a subspace
(restricting the domain, too) will not, in general, be a quotient map. And if f : (X1,T1) →
(Y1,T

′

1 ) and g : (X2,T2) → (Y2,T
′

2 ) are both quotient maps, the mapf×g : X1×X2 → Y1×Y2
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need not be a quotient map (a situation that will bother us many times moving forward...).
But if f and g are both open maps, then f × g is an open map, and so is a quotient map.

Connectedness.
What makes the Intermediate Value Theorem [ f : [a, b] → R cts, then f([a, b]) contains the
interval between f(a) and f(b) ] work? What is it about the topological space [a, b]? Pretend
that the result fails! f : X → R

Then there is a c between f(a) and f(b) missed by f , so f(X) ⊆ (−∞, c) ∪ (c,∞), so X =
f−1(−∞, c) ∪ f−1(c,∞) = U ∪ V , with U, V ∈ T, U ∩ V = f−1(∅) = ∅, and U, V 6= ∅ (a is
in one, b in the other).

This describes a topological property! A separation of a top space (X,T) is a pair U, V ∈ T

with U ∪ V = X , u ∩ V = ∅, and U, V 6= ∅. And denying a topological property is a
topological property! A space is connected if it has no separation.

Equivalently, if U, V ∈ T with U ∪ V = X and U ∩ V = ∅, then either U = ∅ or V = ∅.
[Equivalently, U = X or V = X !]

Equivalently (since U = X \ V would be closed), X connected means that X contains no
non-trivial (not equal to ∅, X) clopen (= both closed and open) sets.

A separation can be used to build a cts fcn f : X → R failing IVT (f(x) = 3 if x ∈ U and
f(x) = 71 if x ∈ V works...).

So (X,T) is connected ⇔ for every cts function f : (X,T) → (R, usual) and a, b ∈ X , if c lies
between f(a) and f(b) then there is a d ∈ X with f(d) = c.

A subset A ⊆ X is connected if (A,TA) is a connected space. Equivalently, if A ⊆ U ∪ V with
U, V ∈ T and A ∩ U ∩ V = ∅, then either A ⊆ U or A ⊆ V .

The unit interval ([0, 1]usual) is connected.
If f : x → Y is cts and X is connected, then f(X) ⊆ Y is a conected subset of Y . [‘The cts
image of a connected set is connected.’] (Otherwise, the inverse image of a separation of
f(X) will be a separation of X .)

Flipside: a space is totally disconnected if for every x, y ∈ X with x 6= y, there is a separation
(U, v) of X with x ∈ U , y ∈ V . [Points can be separated using separations!]

‘Building’ connected sets.
If (X,T) is path connected, then (X,T) is connected. (Otherwise, a path between points in
different sets of the separation will, taking inverse images, give a separation of [0, 1].

But: connected spaces need not be path connected. (Example: any uncountable set X with
the countable complement topology. Every cts fcn γ : [0, 1] → X must be constant.)

All intervals in R are path-connected, hence connected. Conversely, all connected subsets of
R are intervals.

If A,B ⊆ X are connected subsets of X , and A ∩ B 6= ∅, then A ∪ B is connected.
If Ai ⊆ X are connected subsets, and for some j, Ai ∩Aj 6= ∅ for all i, then ∪iAi is connected.
If A ⊆ X is connected, and A ⊆ B ⊆ A, then B is connected.
If X and Y are connected, then X × Y is connected.
If Xi are all connected, then

∏
iXi, using the product topology, is connected.

But:
∏

i∈Z+
R, with the box topology, is not connected. (Thinking of points as sequences, the

sets {bounded sequences}, {unbounded sequences} form a separation).
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