Math 445 Number Theory

Topics for the first exam

An integer p is prime if whenever p = ab with a,b € Z, either a = tp or b= +p .
[For sanity’s sake, we will take the position that primes should also be > 2 ]

Primality Tests.

How do you decide if a number n is prime?

Brute force: try to divide every number (better: prime) < n (better < y/n) into n, to locate
a factor.

Fermat’s Little Theorem. If p is prime and (a,p) = 1, then a?~! = 1(mod p) .

A composite number n for which a”~! = 1(mod n) is called a pseudoprime to the base a. A
composite number which is a pseudoprime to every base a satisfying (a,n) =1 is called a

Carmichael number.
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n) = number of integers a between 1 and n with (a,n) = 1; if n = p{* - - - p7* is the prime
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factorization of n, then ¢(n) = p*~'(p1 — 1) - pi*~(pp — 1)

Euler’s Theorem.If (a,n) = 1, then a®™ (mod n) .

Fermat = if (a,n) =1 and a"~! # 1(mod n) then n is not prime.

If p is prime and a? = 1(mod p), then a = +1(mod p)

(Miller-Rabin Test.) Given n, set n — 1 = 2¥d with d odd. Then if n is prime and (a,n) = 1,
either a? = 1(mod n) or a2 = —1(modn) for some i < k.

If n is not prime, but the above still holds for some a, then n is called a strong pseudoprime
to the base a.

Compositeness test: If a? Z +1(mod n), compute azid(modn) for ¢+ = 1,2,... . If this
sequence hits 1 before hitting —1, or is not 1 for ¢ = k, then n is not prime.

Fact: If n is composite, then it is a strong pseudoprime for at most 1/4 th of the a’s between
1 and n.

Finding Factors.

(Pollard Rho Test.) Idea: if p is a factor of N, then for any two randomly chosen numbers
a abd b, p is more likely to divide b — a than N is.

Procedure: given N, use Miller-Rabin to make sure it is composite! Then pick a fairly
random starting value a; = a, and a fairly random polynomial with integer coefficients
f(x) (such as f(z) = 22 +b), then compute as = f(a1),...,a, = f(an_1),... . Finally,
compute (ag, — an, N) for each n. If this is > 1 and < N, stop: you have found a proper
factor of N. If it gives you N, stop: the test has failed. You should restart with a different
a and/or f.

Basic idea: this will typically find a factor on a timescale on the order of \/p < N /4 where
p is the smallest (but unknown!) prime factor of N.



RSA cryptosystem:

To send and receive messages securely: start by choosing two large primes p, q , set n = pq,
and choose an e relatively prime to (p — 1)(¢ — 1) . Publish n and e. Privately compute
d with de — x(p —1)(¢ — 1) = 1 . To send you a message, we convert the message to a
number A (cutting it into blocks shorter than n if necessary), compute B = A° (mod n)
and send B. You then compute (because of Euler’s Theorem!) A = B¢ (mod n) .

The security of the system rests on the fact that, to the best of our current knowledge, the
fastest way to recover A from B is to determine d (in order to do your calculations), which
seems to require knowing (p — 1)(¢ — 1), which amounts to knowing p and ¢, which means
factoring n, which is hard!

Periods of repeating fractions.
For integers n with (10,n) = 1, the fractions a/n have a repeating decimal expansion. E.g,
2/3 =.6666..., 1/7 = .142857142857 ..., etc.

Determining the length of the period (repeating part) can be done via FLT: 1/7 = .142857142857 . ..
means 1/7 = 142857/10° + 142857/10'2 + ... = 142857/(10° — 1), i.e 7|10° — 1, and 6 is
the smallest power for which this is true.

In general (if (a,n) = 1), we define ord,(a) = k = the smallest positive number with
a* = 1(mod n). Equivalently, it is the largest number satisfying a” = 1(mod n) =
ord,(a)|r . (Therefore, ord,(a)|¢(n), by Euler’s Theorem.)

Generally, then, the period of 1/n = ord,(10), when (10,n) = 1. When (10,7n) > 1, we can
write n = 2"5%b = ab with (10,b) = 1, and then write

1 = L = é + — for some integers A, B .

n ab a b

A/a will have a terminating decimal expansion, so 1/n will have some garbage at the begin-
ning , and then repeat with period equal to the period of b.

Gauss conjectured that there are infinitely many primes p whose period is p — 1; this is still

unproved.
Primitive roots.

A number a is called a primitive root of 1 mod n if ord,(a) = ¢(n) (the largest it could be).

If n is prime, then there is a primitive root of 1 mod n.

The proof uses the important

(Lagrange’s Theorem.) If p is a prime, and f(z) = ap,z™ + -+ a1z + ag is a polynomial with
integer coefficients, a,, Z 0(mod p), then the equation

f(z) = 0(mod p)
has at most n solutions.

This implies that if p is prime and d|p — 1, then the equation 2¢ = 1(mod p) has ezactly d
solutions.

Finding a primitive root mod p a prime: for each prime p;|p — 1, find a; with al(-p_l)/pi Z1
(mod p), then set a = the product of the a;.

Lemma: If ord,(a) = m, then ord,(a*) = m/(m,k)

Corollary: If p is prime, then there are exactly ¢(p — 1) (incongruent mod p) primitive roots
of 1 mod p: find one, a, then the rest are a* for 1 <k <pand (k,p—1) = 1.
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A faster factoring algorithm: the quadratic sieve.

Originates with Fermat: for n odd, if composite then n = a? — b? = (a + b)(a — b) for some
a,b. Finding such a factorization is slower than trial division!

Improvement: find a; close to /1 so that a? — n = b; have product a square: by - - - by = 22,
so n|(ay---ag)? — 2%, and (n,ay---ax + ) or (n,a;---a; — x) might produce a proper
factor.

Finding the a;: choose a bound B and search for b; whose prime factors are all < B (B-
smooth numbers). If there are m primes < B, then with m + 1 such b; some product of
them must be a square. The right collection can be found by linear algebra: create vectors
listing the exponents of the primes in the factorization of b;, mod 2, and find a collection
which sum to the 0-vector, mod 2.

Finding the b;; start with a = |\/n] + 1 and (a + i)? — n = b;; for a prime p < B, plb; if
(a+1)? = n (mod p); this is true either never (if 22 = n has no solutions) or for two values
ni,ne mod p (see below!). Only a + i = ny + jp can yield a b; that is a multiple of p;
finding such b; that are divisble by many p yields B-smooth numbers.

Pythagorian triples:

If a® 4+ b2 = 2, then we call (a, b, ¢) a Pythagorean triple. If (a,b) = 1 then ((a,c) = (b,c) =1
and) we call the triple primitive. For a primitive triple, ¢ must be odd, a (say) even and b
odd. Then because

Proposition: If (z,y) = 1 and xy = 2, then x = u?, y = v? for some integers u, v .
we can write a = 2uv , b = u? —v? , and ¢ = u? +v? for some integers u, v ; these formulas

describe all primitive Pythagorean triples.
Sums of squares.

If n = a? + b%, then n = 0, 1, or 2(mod 4). Since the product of the sum of two squares
(a® +b?)(c® + d?) = (ac+ bd)? + (ad — be)? = (ad + be)? + (ac — bd)?
is the sum of two squares, and

2n:(a2—|—b2):>n:(aT_b)2—|—( )2 and m = (a® +b?) = 2m = (a — b)® + (a + b)?

it suffices to focus on odd numbers, and (more or less) odd primes.

a-+b

If p = 1(mod 4) is prime, then p is the sum of two squares.

If p = 3(mod 4) is prime and p|a® + b2, then p|a and plb.

Together, these imply that a positive integer n can be expressed as the sum of two squares
< in the prime factorization of n, every prime congruent to 3 mod 4 appears with even
(possibly 0) exponent.

n'" roots modulo a prime:

If p is prime and (a,p) = 1, then (setting r = (n,p — 1) the equation 2™ = a(mod p) has
7 solutions if a»~1/" = 1(mod p)
no solution if a®=1/" £ 1(mod p)
(Euler’s Criterion.) The equation 22 = a(mod p) has a solution (p = odd prime) < aP~1/2 =
1(mod p) ; it then has two solutions (z and —z).
The equation 2 = —1(mod p) has a solution < (—1)®~1/2 = 1(mod p) & p = 2 or
p = 1(mod 4)



Solving 22 = a (mod p): the algorithm RESSOL.

If it has a solution, then T =1 (mod p) . Let p— 1 = 2¥m with m odd, and set r = 0™
(mod p), and n = a™. Then r2 = a™+! = q-n, and n?° = a®T =1, so ord,(n) = 2M

for some ki < k. The goal: by altering r, whittle n down to 1.

We also need a quadratic non-residue, i.e., a b with Ve = - (mod p). (Find one by
computing b*= for random b; half of all guesses will be non-residues.) Then setting
¢ =b™, ordy(c) = 2", s0 ord,(c*" ') = 2% Then we use:

If ord,(z) = ord,(y) = 2", then ord,(zy) = 2° with s < r.

gk—ky—1 gk—k1

Then setting r1 = ¢ , (rr1)? = alc n) = any, with ord,(ni) = 2*2 for ky < k.
Now do it again! Continuing this process will yield = rry - - -7, with (rry---74)% = ang
and ord,(ng) =2° =1, i.e., ny = 1, giving 2? = a.

Note that we need to know the precise order of n; at each step (which power of 2), which
can be found by repeated squaring.



