
Math 107H

Topics for the second exam

Technically, everything for the first exam! Plus:

Improper integrals

Fund Thm of Calc:

∫ b

a

f(x) dx = F (b) − F (a), where F ′(x) = f(x)

Problems: a = −∞, b = ∞; f blows up at a or b or somewhere in between

integral is“improper”; usual technique doesn’t work. Solution to this:
∫

∞

a

f(x) dx = lim
b→∞

∫ b

a

f(x) dx

∫ b

−∞

f(x) dx = lim
a→−∞

∫ b

a

f(x) dx

(blow up at a)

∫ b

a

f(x) dx = lim
r→a+

∫ b

r

f(x) dx = lim
ε→0+

∫ b

a+ε

f(x) dx

(similarly for blowup at b (or both!))
∫ b

a

f(x) dx = lim
s→b−

∫ s

a

f(x) dx = lim
ε→0+

∫ b−ε

a

f(x) dx

(blows up at c (b/w a and b))

∫ b

a

f(x) dx = lim
r→c−

∫ r

a

f(x) dx + lim
s→c+

∫ b

s

f(x) dx

The integral converges if (all of the) limit(s) are finite

Comparison: 0 ≤ f(x) ≤ g(x) for all x;

if

∫

∞

a

g(x) dx converges, so does

∫

∞

a

f(x) dx

if

∫

∞

a

f(x) dx diverges, so does

∫

∞

a

g(x) dx

Applications of integration

Volume by slicing. To calculate volume, aprroximate region by objects whose volume
we can calculate.

Volume ≈
∑

(volumes of ‘cylinders’)

=
∑

(area of base)(height)

=
∑

(area of cross-section)∆xi .

So volume =

∫ right

left

(area of cross section) dx

Solids of revolution: disks and washers. Solid of revolution: take a region in the
plane and revolve it around an axis in the plane.
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region

rotate

take cross-sections perpendicular to
axis of revolution;

cross-section = disk (area=πr2)
or washer (area=πR2 − πr2)

rotate around x-axis: write r
(and R) as functions of x,
integrate dx

rotate around y-axis: write r
(and R) as functions of y,
integrate dy

Otherwise, everything is as before: volume =

∫ right

left

A(x) dx or volume =

∫ top

bottom

A(y) dy

The same is true if axis is parallel to x− or y−axis; r and R just change
(we add a constant).

Cylindrical shells. Different picture, same volume! Solid of revolution; use cylinders
centered on the axis of revolution. The intersection is a cylinder, with area = (circumfer-
ence)(height) = 2πrh

volume =

∫ right

left

(area of cylinder) dx or

∫ top

bottom

(area of cylinder) dy!)

region

rotate

r

h

revolve around vertical line:
integrate dx

revolve around horizontal line:
integrate dy

Ex: region in plane between y = 4x, y = x2, revolved around y-axis

left=0, right=4, r = x, h = (4x − x2) volume =

∫ 4

0

2πx(4x− x2) dx

Arclength. Idea: approximate a curve by lots of short line segments; length of curve ≈
sum of lengths of line segments.

Line segment between (ci, f(ci)) and (ci+1, f(ci+1)):
√

1 + (
f(ci+1) − f(ci)

ci+1 − ci
)2 · (ci+1 − ci) ≈

√

1 + (f ′(ci))2 · ∆xi

So length of curve =

∫ right

left

√

1 + (f ′(x))2 dx

The problem: integrating
√

1 + (f ′(x))2 ! Sometimes, 1 + (f ′(x))2 turns out to be a
perfect square.....
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Exponential growth and decay

In many situations, the rate of change of some quantity depends in a known way on the
values of the quantity. A basic example is radioactive decay: if f(t) is the amount of isotope
at time t, then f ′(t) = kf(t) for some constant k (which depends upon the isotope). Such
equation is called a differential equation, since it involves an (unknown) function as well
as its derivative.

The equation for radiactive decay is one of a class of equations called separable equations.
A differential equation is separable if it can be written as y′ = A(t)B(y)

This allows us to ‘separate the variables’ and integrate with respect to dy and dt to get a
solution:

1

B(y)
dy = A(t) dt ; integrate both sides

In the end, our solutions look like F (y) = G(t) + c, so it defines y implicitly as a function
of t , rather than explicitly. In some cases we can invert F to get an explicit solution, but
often we cannot.

For example, the separable equation y′ = ty2 , y(1) = 2 has solution

∫

dy

y2
=

∫

t dt + c

so solving the integrals we get (−1/y) = (t2/2) + c, or y = −2/(t2 + 2c) ; setting y = 2
when t = 1 gives c = −1 .

Applying this approach to a radioactive decay problem, y′ = ky, yields y(t) = Cekt, where
the constant of integration C can be determined by setting t = 0; y0 = y(0) = Ce0 = C.
So y(t) = y0e

kt. The constant k can then be determined if we know the value of y(t) for

any other time t0; k =
1

t0
ln[y(t0)/y0] .

Newton’s Law of Cooling: This states that the rate of change of the temperature T (t) of
an object is proportional to the difference between its temperature and the ambient tem-
perature of the air around it. The constant of proportionality depends upon the particular
object (and the medium, e.g., air or water) it is in. In other words,

T ′ = k(A − T )

Since a cold object will warm up, and a warm object will cool down, this means that the
constant k should be positive. This equation is separable, and we can find the solution

T (t) = A + (T (0) − A)e−kt

Typically, k is not given, but can be determined by knowing the temperature at some other
time t1, by plugging into the equation above and solving for k.

Infinite sequences and series

Limits of sequences of numbers

A sequence is: a string of numbers; a function f :N→R; write f(n) = an

an = n-th term of the sequence

Basic question: convergence/divergence
lim

n→∞

an = L (or an → L) if

eventually all of the an are always as close to L as we like, i.e.
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for any ε > 0, there is an N so that if n ≥ N then |an − L| < ε
Ex.: an = 1/n converges to 0 ; can always choose N=1/ε
an = (−1)n diverges; terms of the sequence never settle down to a single number

If an is increasing (an+1 ≥ an for every n) and bounded from above

(an ≤ M for every n, for some M) , then an converges (but not necessarily to M !)

limit is smallest number bigger than all of the terms of the sequence

Limit theorems for sequences

Idea: limits of sequences are a lot like limits of functions

If an → L and bn → M , then
(an + bn → L + M (an − bn) → L − M (anbn) → LM , and

(an/bn) → L/M (provided M , all bn are 6= 0)

Sqeeze play theorem: if an ≤ bn ≤ cn (for all n large enough) and
an → L and cn → L , then bn → L

If an → L and f :R→R is continuous at L, then f(an) → f(L)

if an = f(n) for some function f :R→R and lim
x→∞

f(x) = L , then an → L

(allows us to use L’Hôpital’s Rule!)

Another basic list: (x = fixed number, k = konstant)
1

n
→ 0 k → k x

1
n → 1

n
1
n → 1 (1 +

x

n
)n → ex xn

n!
→ 0

xn →
{

0, if |x| < 1 ; 1, if x = 1 ; diverges, otherwise
}

Infinite series

An infinite series is an infinite sum of numbers

a1 + a2 + a3 + . . . =
∞
∑

n=1

an (summation notation)

n-th term of series = an ; N -th partial sum of series = sN =

N
∑

n=1

an

An infinite series converges if the sequence of partial sums
{

sN

}

∞

N=1
converges

We may start the series anywhere:

∞
∑

n=0

an,

∞
∑

n=1

an,

∞
∑

n=3437

an, etc. ;

convergence is unaffected (but the number it adds up to is!)

Ex. geometric series: an = arn ;

∞
∑

n=0

an =
a

1 − r

if |r| < 1; otherwise, the series diverges.

Ex. Telescoping series: partial sums sN ‘collapse’ to a compact expression

E.g.

∞
∑

n=1

1

n(n + 2)
=

∞
∑

n=1

1

2

( 1

n
−

1

n + 2

)

; sN =
1

2

(1

1
+

1

2
−

( 1

N + 1
+

1

N + 2

))
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n-th term test: if

∞
∑

n=1

an converges, then an → 0

So if the n-th terms don’t go to 0, then
∞
∑

n=1

an diverges

Basic limit theorems: if
∞
∑

n=1

an and
∞
∑

n=1

bn converge, then

∞
∑

n=1

(an + bn)=
∞
∑

n=1

an+
∞
∑

n=1

bn

∞
∑

n=1

(an − bn)=
∞
∑

n=1

an-
∞
∑

n=1

bn

∞
∑

n=1

(kan)= k

∞
∑

n=1

an

Truncating a series:
∞
∑

n=1

an =
∞
∑

n=N

an +
N−1
∑

n=1

an

The integral test

Idea:
∞
∑

n=1

an with an ≥ 0 all n, then the partial sums

{sN}∞N=1
forms an increasing sequence;

so converges exactly when bounded from above

If (eventually) an = f(n) for a decreasing function f : [a,∞) →R, then
∫ N+1

a+1

f(x) dx ≤ sN =

N
∑

n=a

an ≤

∫ N

a

f(x) dx

so

∞
∑

n=a

an converges exactly when

∫

∞

a

f(x) dx converges

Ex:

∞
∑

n=1

1

np
converges exactly when p > 1 (p-series)

Ex:

∞
∑

n=1

1

n(lnn)p
converges exactly when p > 1 (logarithmic p-series?)

These families of series make good test cases for comparison with more involved terms (see
below!)

Comparison tests

Again, think

∞
∑

n=1

an , with an ≥ 0 all n

Convergence depends only on partial sums sN being bounded

One way to determine this: compare series with one we know converges or diverges

Comparison test: If bn ≥ an ≥ 0 for all n (past a certain point), then

if

∞
∑

n=1

bn converges, so does

∞
∑

n=1

an ; if

∞
∑

n=1

an diverges, so does

∞
∑

n=1

bn
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(i.e., smaller than a convergent series converges; bigger than a divergent series diverges)

More refined: Limit comparison test: an and bn ≥ 0 for all n,
an

bn
→ L

If L 6= 0 and L 6= ∞, then
∑

an anf
∑

bn either both converge or both diverge

If L = 0 and
∑

bn converges, then so does
∑

an

If L = ∞ and
∑

bn diverges, then so does
∑

an

(Why? eventually (L/2)bn ≤ an ≤ (3L/2)bn ; so can use comparison test.)

Ex:
∑

1/(n3 − 1) converges; L-comp with
∑

1/n3

∑

n/3n converges; L-comp with
∑

1/2n

∑

1/(n ln(n2 + 1)) diverges; L-comp with
∑

1/(n lnn)

The ratio and root tests

Previous tests have you compare your series with something else (another series,
an improper integral); these tests compare a series with itself (sort of)

Ratio Test:
∑

an, an 6= 0 all n; lim
n→∞

∣

∣

an+1

an

∣

∣ = L

If L < 1 then
∑

an converges absolutely

If L > 1, then
∑

an diverges

If L = 1, then try something else!

Root Test:
∑

an, lim
n→∞

|an|
1/n = L

If L < 1 then
∑

an converges absolutely

If L > 1, then
∑

an diverges

If L = 1, then try something else!

Ex:
∑ 4n

n!
converges by the ratio test

∑ n5

nn
converges by the root test

Absolute convergence and alternating series

A series
∑

an converges absolutely if
∑

|an| converges.

If
∑

|an| converges then
∑

an converges. A series which converges but does not

converge absolutely is called conditionally convergent.

An alternating series has the form
∑

(−1)nan with an ≥ 0 for all n.

If the sequence an is decreasing and has limit 0, then the alternating series test

states that
∑

(−1)nan converges. For example,
∑

∞

n=0
(−1)n/(n + 1) converges, but not

absolutely, so it is conditionally convergent.

The Basic Idea: For a series
∑

an to converge, it’s n-th term an must go to 0. But that

isn’t enough! The n-th terms must go to 0 fast enough for their sum to remain finite. How
fast is fast enough? That is exactly what the convergence tests are designed to determine....
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