
Math 208H

Topics since the second exam

Line Integrals

We introduced vector fields F (x, y) in large part because these are the objects that we can
most naturally integrate over a (parametrized) curve. The reason for this is that along a
curve we have the notion of a velocity vector ~v at each point, and we can compare these
two vectors, by taking their dot product. This tells us the extent to which F points in the
direction of ~v. Integration is all about taking averages, and so we can think if the integral
of F over the curved C as measuring the average extent to which F points in the same
direction as C.

We can set this up as we have all other integrals, as a limit of sums. Picking points ~ci strung
along the curve C, we can add together the dot products F (~ci) • ( ~ci+1 − ~ci), and then take
a limit as the lengths of the vectors ~ci+1 − ~ci between consecutive points along the curve
goes to 0. We denote this number by ∫

C

F • d~r

Such a quantity can be interpreted in several ways; we will mostly focus on the notion of
work. If we interpret F as measuring the amount of force being applied to an object at each

point (e.g., the pull due to gravity), then

∫
C

F •d~r measures the amount of work done by F

as we move along C. In other words, it measures the amount that the force field F helped

us move along C (since moving in the same direction as F , it helps push us along, while
when moving opposite to it, it would hinder us).

In the case that F measures the current in a river or lake or ocean, and C is a closed curve
(meaning it begins and ends at the same point), we interpret the integral of F along C as
the circulation around C, since it measures the extent to which the current would push you
around the curve C.

Of course, as usual, we would never want to compute a line integral by taking a limit! But

if we use a parametrization of C, we can interpret

∫
C

F • d~r as an ‘ordinary’ integral. The

idea is that if we use a parametrization ~r(t) for C then F (~ci) • ( ~ci+1 − ~ci) becomes

F (~r(ti)) • (~r(ti+1)− ~r(ti))

But using tangent lines, we can approximate ~r(ti+1)− ~r(ti) by ~r′(ti)(ti+1 − ti) = ~r′(ti)∆t .
So we can instead compute our line integral as∫

C

F • d~r =

∫ b

a

F (~r(t)) • ~r′(t) dt

where ~r parametrizes C with a ≤ t ≤ b .

An important point is that the value of the line integral is independent of the parametrization
of the curve (so long as we traverse γ in the same direction); this follows from our original
description which did not really use a parametrization, or directly (via u-substitution) by
considering a change of parametrization (as a change of variable, u for t).

Some notation that we will occasionally use: If the vector field F = (M,N, P ) and ~r(t) =
(x(t), y(t), z(t)), then d~r = (dx, dy, dz), so F • d~r = Mdx+Ndy + Pdz . So we can write∫
C

F • d~r =

∫ b

a

Mdx+Ndy + Pdz =

∫ b

a

(M
dx

dt
+N

dy

dt
+ P

dz

dt
) dt
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Gradient fields and path independence
In general, the computation of a line integral can be quite cumbersome, in part because
we need to evaluate the vector field F at the point ~r(t), while can yield quite complicated
formulas. But there is one class of vector fields that are really quite easy to integrate:
gradient vector fields. This is because we can compute:

if F = ∇(f), then F (~r(t)) • ~r′(t) =
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
+
∂f

∂z

dz

dt
=

d

dt
(f(~r(t)))

so

∫
C

F • d~r =

∫ b

a

F (~r(t)) • ~r′(t) dt =

∫ b

a

d

dt
(f(~r(t))) dt = f(~r(b))− f(~r(a)) . We call this

the Fundamental Theorem of Calculus for Line Integrals.
We say that a vector field f is path-independent (or conservative) if the value of a line
integral over a curve C depends only on what the endpoints P,Q of C are, i.e., the integral
would be the same of any other curve running from P to Q. Our result right above can then
be interpreted as saying that gradient vector fields are conservative. What is amazing is
that it turns out that every conservative vector field F is the gradient vector field for some
function f . We can alctually write down the function, too (by stealing an idea from the
Fundamental Theorem of Calculus...), as

f(x, y) =

∫
C

F • d~r , where C is any curve from (0,0) to (x, y).

Green’s Theorem
All of which is very nice, but far too theoretical for practical purposes. What we need are
better ways to tell that a vector field is conservative, and to build the function f when it is.
Luckily, this is something we can do!
First, a slight reinterpretation: a vector field F is path-independent if

∫
C
F •d~r=0 for every

closed curve C.
If F is conservative, then F = (F1, F2) = (fx, fy) for some function f . But then by using the
equality of mixed partials for f , we can then conclude that we must have (F1)y = (F2)x . In
fact, this is enough to guarantee that F is conservative; this is because of Green’s Theorem:
defining the curl of F to be (F2)x − (F1)y, we have

If R is a region in the plane, and C is the boundary of R, parametrized so that we travel
counterclockwise around R, then∫

C
F • d~r =

∫
R
curl(F ) dA

In particular, if the curl is 0, then the integral of F along C is always 0 for every closed
curve, so F is conservative.
We can actually use this result to evaluate line integrals or double integrals, whichever we
wish. For example, we can compute the area of a region R as a line integral, by integrating
the function 1 over R, and then using a vector field around the boundary whose curl is 1,
such as (0, x) or (−y, 0) or (y, 2x) or ....
This allows us to spot conservative vector fields quite quickly, but doesn’t tell us how to
compute the function it is the gradient of (called its potential function). But in practice this

is a matter of writing down a function f with
∂f

∂x
=F1 (e.g., f(x, y) =

∫
F1(x, y)dx). This is

actually a family of functions, because we have the constant of integration to worry about,
which we should really think of as a function of y (because we integrated a function of two

variables, dx). To figure out which function of y, we take
∂

∂y
of your function, and compare

with F2 =
∂f

∂y
; then adjust the constant of integration accordingly.
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(Parametrized) surfaces

Just as curves can be represented as the image of a function from an interval into 3-space,
a surface Σ in space can be parametrized as a function (of two variables), or really three
functions (x, y, and z) from a region R in the s, t-plane;

S(s, t) = (x(s, t), y(u, v), z(s, t)) .

(The basic idea is that these parametrizations will allow us to ‘integrate’ over general surfaces
by instead integrating over regions in the plane, just as parametrized curves allowed us to
integrate over curves by instead integrating over an interval in the real line.)
For example, the graph of a function f : R →R can be parametrized by x = s, y = t,
z = f(s, t) for (s, t) in R. Using ideas from spherical coordinates, we can parametrize
portions of a sphere ρ = a using the parametrization
x = a cos(s) sin(t) , y = a sin(s) sin(t) , z = a cos(t)

We can also parametrize surfaces of revolution: if the graph of (say) y = f(x) is rotated
around the x-axis, then the points on the surface are given, for each x, as the circle (in the
y, z-plane) of radius f(x) centered at (x, 0, 0), giving the prarmetrization
x = s , y = f(x) cos(t) , z = f(x) sin(t)

We can also find a different sort of parametrization for a plane: if we are given a point
(x0, y0, z0) on the plane and a normal vector ~n, then if we find two directions ~v1, ~v2 lying
in the plane (so their dot product with ~n is 0; good choices are (1, 0, a) and (0, 1, b) for the
appropriate a, b), then every point in the plane can be described as

S(s, t) = (x0, y0, z0) + s~v1 + t~v2

which then parametrizes the plane.

Flux Integrals

The basic idea
The basic idea is that we can also integrate vector fields (in 3-space) over a surface. The
interpretation we will use is that we are measuring the amount of fluid flowing through a
surface (e.g., a cell membrane) immersed in the fluid.
We can think of a wire-frame surface sitting in a river; we would like to compute the amount
of water flowing (each second, perhaps) flowing through the surface. (Or, you can think of
computing the amount of rain falling on the surface of your body...)
Our input is a (velocity) vector field F , and a surface Σ, described in some fashion (e.g.,
as the graph of a function of two vairables). The idea is that a piece of surface which is
tilted with respect to the vector field will not contribute much to the total. In other words,
the amount flowing through the surface is related to the extent to which the (unit) normal

vector for the surface is pointing in the same direction as F . We measure this with the dot
product, F • ~n. This amount is also proportional to the size of the surface; twice as much
surface will give twice as much flow. This leads us to believe that what we need to add up
in order to compute the flow through the surface is F • ~n dA (to take into account tilt and
size).

But what is ~n dA, really? The key is that if we look at a small rectangle in R, with side
lengths ds and dt, then it will be carried under our parametrization S to (approximately) a

small parallelogram with sides
∂S

∂s
and

∂S

∂t
. So what we want, for ~n dA, is a vecctor normal

to these two vectors, with length the area of the parallelogram that they span. But! This
is exactly what their cross product is!
So we define the flux integral of a vector field F over a (parametrized) surface Σ to be
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∫
Σ

~F • d ~A =

∫
R

~F (S(s, t)) • (
∂S

∂s
×

∂S

∂t
) dA

Now at every point of the surface Σ, we actually have two choices of unit normal vector ~n;
we will see in the next section how to make a more or less ‘obvious’ consistent choice of
normal, the outward pointing normal. For example, if Σ is a sphere of radius R, centered at
(0,0,0), the outward unit normal at (x, y, z) is just (x/R, y/R, z/R).

Computing using graphs, cylindrical, and spherical coordinates
Of course, we still don’t want to compute flux integrals as limits of sums, either! What we

need is to compute
∂S

∂s
×

∂S

∂t
for some typical parametrizations. We study three cases:

Suppose Σ is the graph of a function f , having domain R in the plane. What we would
really like to do is to compute the flux integral as the integral of a function over R. To do
this, we note that the vector v = (−fx,−fy, 1) is normal to the graph of f ; it’s the normal
vector we used to express the tangent plane to the graph of f . It just so happens that v =
(1, 0, fx) × (0, 1, fy), and so its length is equal to the area of the parallelogram that these
two vectors span. But!, these are exactly the parallelograms we would use to approximate
the graph, i.e., this length is also dA. So, d ~A = (−fx,−fy, 1) dA, and so∫

S
F • d ~A =

∫
R
F (x, y, f(x, y)) • (−fx,−fy, 1) dx dy

We can also use cylindrical and spherical coordinates, in special cases. If Σ is a piece of a
cylinder cylinder, given by r = r0, for θ and z in some range of values R, then the outward
normal at r0, θ, z is (cos θ, sin θ, 0), while dA = r0 dθ dz, so∫

S
F • d ~A =

∫
R
F (r0 cos θ, r0 sin θ, z) • (cos θ, sin θ, 0)r0 dθ dz

If Σ is a piece of sphere, given by ρ = ρ0 for θ and φ in some range R of values, then the
outward normal is (cos θ sinφ, sin θ sinφ, cosφ) while dA is ρ20 sinφ dθ dφ, so∫

Σ
F • d ~A =∫

R
F (ρ0 cos θ sinφ, ρ0 sin θ sinφ, ρ0 cosφ) • (cos θ sinφ, sin θ sinφ, cosφ) ρ

2
0 sinφ dθ dφ

For surfaces of revolution, taking the graph of y = f(x) and spinning it around the x-axis,
for example, we can build a parametrization x = s, y = f(s) cos t, z = f(s) sin t (that is, a
circle with radius f(x) in the (y, z-)plane given by x = s. Then

Ss × St = (1, f ′(s) cos t, f ′(s) sin t)× (0,−f(s) sin t, f(s) cos t) = f(s)(f ′(s),− cos t,− sin t)
(for the inward normal, the negative gives the outward normal).

Calculus of Vector Fields

The divergence of a vector field
In terms of the coordinates ~F = (F1, F2, F3) of a vector field, the divergence is

div(F ) = (F1)x + (F2)y + (F3)z
It can be identified with the flux density of the vector field ~F at a point P : this should be
thought of as the flux integral of F through a tiny box around the point P . This measures
the extent to which the vector field is ‘expanding’, at each point.

div(F ) = the limit as the side length goes to 0, of the flux through the sides of a box centered
at P , divided by the volume of the box.

A vector field F is divergence-free if div(F ) = 0. For example, F = (y, z, x) is divergence
free, but F = (x, y, z) is not; div(F ) = 3.
Some formulas that can help to calculate divergence:

div(fF ) = (∇f) • F + f · (divF )
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div(F ×G) = (curl F ) •G − F • (curlG) in 3-space

The Divergence Theorem
If W is a region in 3-space, it boundary is a surface S. (S might actually consist of several
pieces; this won’t really effect our discussion.) We can choose normal vectors for each piece
of S by insisting that ~n alway points out of W . Then we have, for any vector field F which

is defined everywhere in W :

The Divergence Theorem:

∫
S

~F • d ~A =

∫
W

(div F ) dV

In other words, we can compute flux integrals over a surface S that forms the boundary of
a region W , by computing the integral of a different function over W . This is especially
useful when the vector field is divergence-free; for example if the region W has two surfaces
for boundary and F is divergence-free, then the flux integral of F over one surface, with
normals pointing out of W , is equal to the flux integral of F over the other surface, with
normals pointing into W . Even if F is not divergence-free, we can compute the flux integral
of one as the flux integral of the other plus the triple integral of the divergence over W .

The curl of a vector field
We encountered the curl of a vecctor field in the plane when formulating Green’s Theorem.
There is a similar quantity for vector fields in dimension 3; for F = (F1, F2, F3), we can
define curl(F ) = “∇× F” = ((F3)y − (F2)z,−((F3)x − (F1)z), (F2)x − (F1)y)
This quantity will play a role in our undertanding of line integrals around curves in space,
and just like in the plane, it can detect gradient vector fields. F = ∇f exactly when curl(F )
= (0,0,0) ; and we can actually construct f using a procedure analogous to the one we came
up with for vector fields with two variables.

The physical interpretation of the curl is as the direction where the circulation density of the
vector field ~F , at the point P , is the largest. The circulation density measures the extent to
which objects caught up in a (velocity) vector field ‘want’ to rotate with their axis pointing
in the direction of a (unit) vector ~n, and is computed as the limit, as the side lengths go to 0,

of the line integral of ~F around the boundary of a little square around P and perpendicular

to ~n, divided by the area of the square. In terms of the curl, it can be computed as

circ~n( ~F ) = curl( ~F ) • ~n

A useful formula:
div(curl( ~F )) = 0 in 3-space

It turns out that this result works the other way; a vector field F , defined over an entire
box, which is divergence-free, is the curl of some other vector field G.

A vector field ~F is curl-free if curl ~F = (0,0,0) . This means that in any box in which ~F

is defined, ~F is a gradient vector field (although it is possible that ~F cannot be expressed

as the gradient of a function everywhere that ~F is defined at the same time; the standard
example of this is the vector field

~F = (
−y

x2 + y2
,

x

x2 + y2
, 0)

~F is curl-free, but it is not a gradient vector field, since (as you can check) the line integral

of ~F around the circle of radius one in the x-y plane with center (0,0,0) is 2π. Green’s

Theorem does not work, because ~F (and so its curl) is not defined on the entire disk with
boundary the circle.)
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Stokes’ Theorem
If S is a surface in 3-space, with a normal orientation ~n, the boundary of S is a colection
of paramatrized curves (there can easily be more than one, e.g, if S is a cylinder). We
can orient each curve using a right-hand rule; if we stand on the curve and walk along it
the chosen orientation with our heads pointing in the direction of ~N , then the surface S
dshould always be on our left. Then Stokes’ Theorem says that, for any vector field ~F
defined everywhere on S: ∫

C

~F • d~r =
∫
S
(curl ~F ) • d ~A

This allows us to compute line integrals as flux integrals, and, with a little work, flux
integrals as line integrals.
For example, it says that the line integral of a curl-free vector field ~F around a closed curve
is always 0, so long as the curve is the boundary of a surface contained entirely in the
domain of ~F .

We say that a vector field ~F is a curl field if ~F = curl( ~G) for some vector field ~G . ~G is

called a vector potential of ~F . Then Stokes’ Theorem says that, for any surface S in the
domain of ~F with boundary C,∫

S

~F • d ~A =

∫
S

curl ~G • d ~A =

∫
C

~G • d~r

So, for example, for a curl field ~F and two surfaces S1 and S2 with the same boundary C,
we have ∫

S1

~F • d ~A =

∫
S2

~F • d ~A

So the flux integral of a curl field really depends just on the boundary of the surface, not
on the surface.

We can test for whether or not ~F is a curl field, using the divergence, since div(curl( ~G)) =
0, so a curl field must be divergence-free. (The opposite, as we have seen, is almost true; it
is true, for example, if the vector field is defined in a big box.)

The whole idea behind these three theorems (Green’s, Divergence, and Stokes’) is that the
integral of one kind of function over one kind of region can be computed instead as the
integral of another kind of function over the boundary of the region.

Green’s: Integral of the vector field ~F over a closed curve in the plane equals integral of its
curl of ~F over the region in the plane that the curve bounds.
Divergence: The flux integral of a vector field ~F through the boundary of a region in 3-space
equals the integral of the divergence of ~F over the region in 3-space.
Stokes’: The line integral of the vector field ~F over a closed curve C in 3-space equals the
flux integral of the curl of ~F over any surface S that has C as its boundary.

Note that Green’s Theorem is really just a special case of Stokes’ (where the curve C

lies in the plane, and the third coordinate of ~F just happens to be 0). All of these, like
the Fundamental Theorem of Line Integrals, are really a kind of Fundamental Theorem of
Calculus, where we are computing a kind of integral by instead computing something else
across the boundary of the region we are interested in. We could keep doing this, finding
a relation between integrals over regions in 4-space (or higher!) in terms of integrals over
their ‘boundary’, but we won’t do that....
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