
Math 208H

Topics for the second exam

(Technically, everything covered on the first exam, plus)

Local Extrema
The partial derivatives of f measuire the rate of change of f in each of the coordinate
directions. So they are giving us partial information (no pun intended) about how thew
function f is rising and falling. And just as in one-variable calculus, we ought to be able to
turn this into a procedure for findong out when a function is at its maximum or minimum.
The basic idea is that at a max or min for f , then, thinking of f just as a function of x,
we would still think we were at a max or min, so the derivative, as a function of x, will be
0 (if it is defined). In other words, fx = 0. similarly, we would find that fy = 0, as well.
following one-variable theory, therefore, we say that
A point (a, b) is a critical point for the function f if fx(a, b) and fy(a, b) are each either
0 or undefined. (A similar notion would hold for functions of more than two variables.)
Just as with the one-variable theory, then, if we wish to find the max or min of a function,
what we first do is find the critical points; if the function has a max or min, it will occur
at a critical point.
And just as before, we have a ‘Second Derivative Test’ for figuring out the difference
between a (local) max and a (local) min (or neither, which we will call a saddle point).
The point is that at a critical point, f looks like its quadratic approximation, which
(simplifying things somewhat) is described as Q(x, y) = Dx2 +Exy+ Fy2 (since the first
derivatives are 0). By completing the square, we can see that the actual shape of the
graph of Q is basically described by one number, called the descriminant, which (in terms
of partial derivatives) is given by

D = fxx(a,b)fyy(a,b)−(fxy(a,b))
2

(Basically, Q looks like one of x2+y2 (local min), −x2−y2 (local max), or x2−y2 (saddle),
and D tells you if the signs are the same (D > 0) or opposite (D < 0) . More specifically,
if, at a critical point (a, b),

D > 0 and fxx> 0 then (a, b) is a local min; if
D > 0 and fxx< 0 then (a, b) is a local max; and if
D < 0, then (a, b) is a saddle point
(We get no information if D = 0.)

Global Extrema: Unconstrained Optimization
Critical points help us find local extrema. To find global extrema, we take our cue from
one-variable land, where the procedure was (1) Identify the domain, (2) find critical points
inside the domain, (3) plug critical points and endpoints into f , (4) biggest is the max,
smallest is the min.
For two variables, we do (essentially) exactly the same thing:

(1) Identify the domain
(2) Find critical points in the interior of the domain
(3) Identify the (potential) max and min values on the boundary of the domain (more
about this later!)
(4) Plug the critical points, and your potential points on the boundary
(5) biggest is max, smnallest is min

This works if the domain is closed and bounded (think, e.g., of a closed interval in the
x direction and a closed interval in the y direction, or the inside of a circle in the plane
(including the circle)). Usually, in practice, we don’t have such nice domains; but we
usually know from physical considerations that our function has a max or min (e.g., find the
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maximum volume you can enclose in a box made from 300 square inches of cardboard...),
and so we still know that it has to occur at a critical point of our function.

Constrained Optimization: Lagrange Multipliers
Most optimization problems that arise naturally are not unconstrained; we are usually
trying to maximize one function while satisfying another. We can use the one-variable
calculus trick of solving the constraint for one variable, and plugging this into the function
we wish to maximize, or we can take a completely different (and often better) approach:
The basic idea is that if we think of our constraint as describing a level curve (or surface)
of a function g, then we are trying to maximize or minimize f among all the points of the
level curve. If the level curves of f are cutting across our level curve of g, it’s easy to see
that we can increase or decrease f while still staying on the level curve of g. So at a max
or min, the level curve of f has to be tangent to our constraining level curve of g. This in
turn means:

At a max or min of f subject to the constraint g, ∇f = λ∇g (for some real number λ)
We must also satisfy the constraint : g(x, y) = c.

So to solve a constrained optimization problem (max/min of f subject to the constraint
g(x, y) = c) we solve

∇f = λ∇g and g(x, y) = c for x, y, and λ. All of the pairs (x, y) that
arise are candidates for the max/min; and the max and min must occur at some of these
points. [Technically, as before, we must also include points along g(x, y) = c where ∇f is
undefined; we won’t run into this possibility in practice, however.]

This also works for functions of more than two variables; the procedure is exactly the same.
In all of these cases, the real work is in solving the resulting equations! A basic technique
that often works is to solve each of the coordinate equations in ∇f = λ∇g for λ ; the other
halves of the equations are then all equal to one another (since they all equal λ).

This in turn allows us to finish our procedure for finding global extrema, since step (3) can
be interpreted as a constrained optimization problem (max or min on the boundary). In
these terms,

To optimize f subject to the condition g(x, y) ≤ c, we

(1) solve ∇f = 0 and g(x, y) < c,
(2) solve ∇f = λ∇g and g(x, y) = c,
(3) plug all of these points into f ,
(4) the biggest is the max, the smallest is the min.

[This works fine, unless the region g(x, y) ≤ c runs off to infinity; but often, physical
considerations will still tell us that one of our critical points is an optimum.]

The Definite Integral of a Function of Two Variables

In an entirely formal sense, the intergal of a function of one variable is a great big huge sum
of little tiny numbers; we add up things of the form f(ci)∆xi, where we cut the interval
[a, b] we are integrating over into little intervals of length ∆xi, and pick points ci in each
interval. In esssence, the integral is the sum of areas of very thin rectangles, which leads
us to iterpret the integral as the area under the graph of f .

For functions of two variables, we do the exact same thing. To integrate a function f over
a rectangle in the plane, we cut the rectangle into lots of tiny rectangles, with side lengths
∆xi and ∆yj , pick a point in each rectangle, and then add up f(xi, yj)∆xi∆yj . This
gives an approximation to the actual integral; letting the little side lengths go to zero, we
arrive at what we would call the integral of f over the rectangle R, which we denote by
∫ ∫

R
f dA (where dA denotes the ‘differential of area’ dxdy (or dydx)
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The idea is that if we think of f as measuring height above the rectangle, then f(xi, yj)∆xi∆yj
is the volume of a thin rectangular box; letting the ∆’s go to zero, the integral would then
measure the volume under the graph of f , lying over the rectangle R.

If the region R isn’t a rectangle, we can still use this method of defining an integral; we
simply cover R with tiny rectangles, take the same sum, and let the ∆’s go to 0.

Of course, we have no reason to believe that as the ∆’s go to 0, this collection of sums will
converge to a single number. But it is a basic fact that if the function f is continuous, and
the region R isn’t too ugly, then these sums always will converge.

Iterated Integrals

Of course, the preceding approach is no way to compute a double integral! Instead, we (as
usual) steal an idea from one-variable calculus.

The idea is that we already know how to compute volumes, and so we implicitly know how
to compute double integrals! We can compute the volume of a region by integrating the
area of a slice. You can do this two ways; (thinking in terms of the region R in the plane)
you can slice R into horizontal lines, and integrate the area of the slices dy, or you can
slice R into vertical lines, and integrate the slices dx.

But each slice can be interpreted as an integral; the area of a horizontal slice is the integral
of f , thought of as just a function of x, and the area of a vertical slice is the integral of f ,
thought of as just a function of y. This leads to two ways to compute our integral:
∫ ∫

R
f dA =

∫ d

c
(
∫ b

a
f(x, y) dx) dy (for horiz slices) =

∫ b

a
(
∫ d

c
f(x, y) dy) dx (for vert slices)

In each case, the inner integral is thought of as the integral of a function of one variable.
It just happens to be a different variable in each case. In the case of a rectangle, the limits
of integration are just numbers, as we have written it. In the case of a more complicated
region R, the inner limits of integration might depend on where we cut. The idea is that a
slice along a horizontal line is a slice along y = constant, and the endpoints of the integral
might depend on y; for a slice along a vertical line (x = constant), the endpoints might
depend on x .

So, e.g., to integrate a function f over the region lying between the graphs of y = 4x and
y = x3, we would compute either
∫ 2

0
(
∫ 4x

x3 f(x, y) dy) dx or
∫ 8

0
(
∫ y1/3

y/4
f(x, y) dx) dy

Which should we compute? Whichever one appears to require the least effort! They give
the same number!

Triple Integrals

Triple integrals are just like double integrals, only more so. We can define them as a limit
of a huge sum; here the terms in the sum would be the value of the function f time the
volume of a tiny rectangular box. The usual interpretation of a triple integral arises by
thinking of the function f as giving the density of the matter at each point of a solid region
W in 3-space. Since density times volume is mass, the integral of f over the region W
would compute the mass of the solid object occupying the region W . In the special case
that f is the function 1, the integral will compute the volume of the region W .

Again, as with double integrals, the way we really comupute a triple integral is as a (triply)
iterated integral. You pick a direction to slice (x=constant, y=constant, or z=constant)
W up, and compute the integral of f over each slice. Each of these is a double integral
(computed as an iterated integral), whose value depends on the variable you sliced along.
To compute the integral over W , you integrate these double integrals over the last variable,
getting three iterated integrals.
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Put slightly differently, you can evaluate a triple integral by integrating out each variable,
one at a time. Typically, we start with z, since our region W is usually described as
the region lying between the graphs of two functions, given as z=blah and z=bleh . The
idea is to first, for each fixed value of x and y, integrate the function f , dz, from blah to
bleh. (Ther resulting values depend on x and y, i.e., are a function of x and y.) Then
we integrate over the region, R, in the plane consisting of the points (x, y) such that the
vertical line hits the region W . We usually call this region R the shadow of W in the x-y
plane. In symbols
∫ ∫ ∫

W
f dV =

∫ ∫

R
(
∫ e(x,y)

a(x,y)
f(x, y, z) dz) dA

For example, the integral of a function over the region lying above the x-y plane and inside
the sphere of radius 2, centered at the origin, would be computed as
∫ ∫

R
(
∫

√
4−x2−y2

0
f(x, y, z) dz) dA =

∫ 2

−2
(
∫

√
4−x2

−
√
4−x2(

∫

√
4−x2−y2

0
f(x, y, z) dz) dy) dx

where R is the shadow of W (in this case, the disk of radius 2, centered at the origin, in
the x-y plane).

Area and average value as integration

We can think of a double integral over a region R as the volume of the region lying under
the graph of f ; this helped us to formulate iterated integrals as an approach to their
computation. A different point of view comes when we think of the rectangles we cut R
into as having the same size; then a Riemann sum is (a constant times) the sum of values
of f at evenly distriibuted points around the region R. In symbols,

∫ ∫

R

f dA ≈ ∆A
∑

f(Pi) = (n∆A)(
1

n

∑

f(Pi)) = (
∑

i

∆A)(
1

n

∑

f(Pi))

But
∑

i

∆A approximates
∫ ∫

R
1 dA, which we interpret as the volume of a cylinder with

base R and height 1, which has volume (Area of R)(1) = Area of R. And (
1

n

∑

f(Pi))

can be thought of as an approximation for the average value of the function f , since the n
points Pi are evenly distributed around R. Putting this all together, we end up with

∫ ∫

R

f dA = (Average value of f)(Area of R).

In this sense, the average value of f over R is the height of cylinder over the base R which
will have the same volume as the region lying under the graph of f .

We can use this either as a definition of the average value of f (and then use the integrals

to compute it!) or as a method for approximating

∫ ∫

R

f dA, by picking a large number

of points in R at random and computing the average value of f at those points (as a way
of approximating this ‘ideal’ notion of the average value of f) and then multiplying by the
area of R. This second interpretation is probably the one that sees actual use more often;
as we have seen in one variable calculus, there are a lot of integrals that resist our abilities
to compute the ‘old-fashioned’ way (by the fundamental theorem of calculus), and multiple
integrals are no different! But applications in physics, economics, biology, engineering, and
a whole host of other disciplines still need to know the value of those integrals!

Change of variables for multiple integrals

Polar coordinates illustrate the benefit of decribing points in the plane differently - it
can simplify the description of some regions in the plane. This, in turn, can aid us in
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the computation of some double integrals. The idea is to change variables; it’s basically
u-substitution for function of two variables.

The general idea is that if a region R can be described more conveniently using a different
sort of coordinates, this means that we are describing x and y as functions of different
variables s and t. For example, a circle of radius 4 is better described as

x = r cos θ and y = r sin θ, for 0 ≤ r ≤ 4 and 0 ≤ θ ≤ 2π

(i.e., polar coordinates). In general, changing coordinates means describing the region R
by

x = x(s, t) and y = y(s, t), for s and t in some region S

Then we write the integral of the function f over R as the integral of something else
(written in terms of s and t) over the region S. The question is, the integral of what? The
answer comes from thinking of cutting up S into little rectangles Sij , and looking at the
little regions Rij the change of variables carries each to. The integral of f over R can be
approximated by adding up values in each region Rij , times the area of Rij. By choosing
(si, tj) in Sij , we can use the point (x(si, tj), y(si, tj)) in Rij; the question is, what is the
area of Rij?.

If we think of the rectangles Sij as having sides of length ds and dt, then using linear
approximations to x(s, t) and y(s, t), Rij can be approximated by a parallelogram with
sides the vectors

(
∂x

∂s
,
∂y

∂s
)ds and (

∂x

∂t
,
∂y

∂t
)dt

Luckily, we know how to compute the area of such a parallelogram; it’s given by the length
of the cross product of the two sides (add 0’s to the vectors, so they are in 3-space!), which
turns out to be:

∆Aij = |xsyt − xtys| ds dt

Taking limits as the size of the Sij goes to zero, we obtain:
∫ ∫

R
f(x, y) dx dy =

∫ ∫

S
f(x(s, t), y(s, t)) |xsyt − xtys| ds dt

The expression |xsyt − xtys| is called the Jacobian associated to the change of variables,
and is sometimes written

|xsyt − xtys| =
∂(x, y)

∂(s, t)

For example, to integrate a function f over the triangle with vertices (1,1), (2,3), and (3,8),
we can instead integrate over the triangle with vertices (0,0), (1,0), and (0,1), by changing
coordinates. It turns out we can always do this by writing

x = as+ bt+ c and y = ds+ et+ f

for appropriate choices of a, b, c, d, e and f . All you need to do is solve the equations
1 = a0 + b0 + c, 1 = d0 + e0 + f, 2 = a1 + b0 + c, 3 = d1 + e0 + f, 3 = a0 + b1 + c, and
8 = d0 + e1 + f which, in this case, gives a=1,b=2,c=1,d=2,e=7,f=1. So x = s + 2t + 1
and y = 2s+7t+ 1, giving Jacobian 1 · 7− 2 · 2 = 3. So under this change of coordinates,

∫ ∫

R
f(x, y) dA =

∫ 1

0

∫ 1−t

0
f(s+ 2t+ 1, 2s+ 7t+ 1) · 3 ds dt

A similar approach applies to triple integrals; we can introduce a change of variables
x = x(s, t, u), y = y(s, t, u), z = z(s, t, u) to describle an integral over a region R in (x, y, z)-
space as an integral over a region S in (s, t, u)-space that the change of variables carries
to R. In this case, our Jacobian ‘expansion factor’ comes from computing the volume
of the image of a small rectangle, which will be a small parallelopiped whose edges are
the vectors ~vsds = (xs, ys, zs)du, ~vtdt = (xt, yt, zt)dy, and ~vudu = (xu, yu, zu)du. As it
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happens, we have a formula for computing this volume! It is the triple product dV =

|(vs × vt) ◦ vu| dsdtdu. This is the Jacobian
∣

∣

∣

∂(x, y, z)

∂(s, t, u)

∣

∣

∣
= |(vs × vt) ◦ vu| which we need to

include for a change of variables formula for triple integrals:
∫ ∫ ∫

R

f(x, y, z) dV =

∫ ∫ ∫

S

f(x(s, t, u), y(s, t, u), z(s, t, u))
∣

∣

∣

∂(x, y, z)

∂(s, t, u)

∣

∣

∣
dsdtdu

Double integrals with polar coordinates

Polar coordinates describe a point in the plane by distance and direction, r and θ. We can
translate from rectangular to polar coordinates by

(x, y) = (r cos θ, r sin θ)

We can use this new coordinate system to simplify some integration problems, in part
because a circular disk is a polar rectangle, defined by 0 ≤ r ≤ R0 and 0 ≤ θ ≤ 2π.
Similarly, circular sectors can be described as ‘polar rectangles’.

But in so doing, we must interpret dA in terms of dr and dθ ; this is completely analogous
to what we must do with u-substitution. If we have a small circular sector, made between
the circles of radius r and r +∆r, and between the lines making angles θ and θ +∆θ, it
has area approximately r∆r∆θ; so

dA = r dr dθ

and so
∫ ∫

R
f(x, y) dA =

∫ ∫

D
f(r cos θ, r sin θ) r dr dθ , where D is how we describe the

region R in polar coordinates. [This is also, of course, what the change of variables formula
above would find.]

For example, the integral of the function f(x, y) = xy on the semicircle lying between the

x-axis and y=
√
9− x2 can be computed as

∫ π

0

∫ 3

0

(r cos θ)(r sin θ)r dr dθ

Triple integrals with spherical and cylindrical coordinates

It turns out that we can impose two new coordinate systems on 3-space, analogous to polar
coordinates in 2-space; each can sometimes be used render an integration problem more
tractible, usually by making the region we integrate over more ‘routine’.

With cylindrical coordinates, we simply replace (x, y, z) with (r, θ, z), i.e., use polar coor-
dinates in the xy-plane. In the new coordinate system, dV = (r dr dθ) dz , since that will
be the volume of a small ‘cylinder’ of height dz lying over the small sector in the xy-plane
that we use to compute dA above.

Usually, we will actually integrate in cylindrical coordinates in the order dz dr dθ, since
this coordinate system is most useful when the shadow of our region - the points in the
(x, y)-plane that our region sits over - is a disk (or other polar rectangle).

Spherical coordinates are much like polar coordinates; we describe a point (x, y, z) by
distance (which we call ρ and direction, except we need to use two angles to completely
specify the direction; first, the angle θ that (x, y, 0) makes with the x-axis in the xy-plane,
and then the angle φ that the line through our point makes with the (positive) z-axis
(which we can always assume lies between 0 and π). A little trigonometry leads us to the
formulas

(x, y, z) = (ρ cos θ sinφ, ρ sin θ sinφ, ρ cosφ)

Again, the idea is that regions troublesome to describe in rectangular coordinates can be
far more routine to describe spherically; for example, the inside of a sphere of radius R0
can be described as the rectangle 0 ≤ ρ ≤ R0, o ≤ θ ≤ 2π, and 0 ≤ φ ≤ π.
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It is a bit more work to compute what dV is in spherical coordinates; computing the
volume of a small ‘spherical box’, we find that it is

dv = ρ2 sinφ dρ dθ dφ
.

So the ‘change of variables formula’ for spherical coordinates reads:
∫ ∫ ∫

W
f(x, y, z) dV =

∫ ∫ ∫

R
f(ρ cos θ sinφ, ρ sin θ sinφ, ρ cosφ) ρ2 sinφ dρ dθ dφ

So, for example, the integral of the function f(x, y, z) = xz over the top half of a ball of
radius 5 could be computed as

∫ 5

0

∫ 2π

0

∫ π/2

0

(ρ cos θ sinφ)(ρ cosφ) (ρ2 sinφ) dφ dθ dρ

Vector-valued functions / Parametrized curves

So far, we have talked about functions of several variables; functions which need several
inputs in order to get a single output. Our next topic is parametrized curves; functions
which have one input but several outputs. We will focus on functions of the form

~r(t) = (x(t), y(t)) or ~r(t) = (x(t), y(t), z(t))
i.e., curves in the plane or 3-space. If we think of t as time, then what ~r does is give us a
point in the plane or 3-space at each moment of time. Thinking of ~r as the position of a
particle, the particle sweeps out a path or curve, C, in the plane or 3-space as time passes;
we think of ~r as parametrizing this curve C.
We therefore make a distinction between a curve (= a collection of point laid out in a
string) and a parametrized curve (= a function which traces out a curve). A single curve
can have many different parametrizations; for example,
~r1(t) = (cos t, sin t) , 0 ≤ t ≤ 2π
~r1(t) = (cos 2t, sin 2t) , 0 ≤ t ≤ π
~r1(t) = (sin t, cos t) , 0 ≤ t ≤ 2π

~r1(t) = (cos t2, sin t2) , 0 ≤ t ≤
√
2π

all parametrize the (unit) circle in the plane. Their diffences with the first are that they
go twice as fast, or travel in the opposite direction, or starts slowly and then moves faster
and faster, respectively.

Of special interest are lines; they can be described as having a starting place and a direction
they travel, and so can be parametrized by ~r(t) = P + t~v, where P is the starting point
and ~v is the direction (for example, the difference of two points lying along the line).
As with ordinary functions, we can build new parametrized curves from old ones by, for ex-
ample, adding constants to each coordinate (which translates the curve by those amounts),
or multiplying coordinates by constants (which streches the curve in those directions).

Velocity and acceleration

When we think of t as time, we can imagine ourselves as travelling along the para-
metrized curve ~r(t), and so at each point we can make sense of both velocity and ac-
celeration. Velocity, which is the instantaneous rate of change of position, can be easily
calculated from our parametrization ~r(t) = x(t), y(t), z(t) as ~v(t) = ~r′(t) = x′(t), y′(t), z′(t)
Similarly, acceleration can be computed as ~a(t) = ~r′′(t) = x′′(t), y′′(t), z′′(t)
On useful fact: if the length of the velocity (i.e., its speed), ||~v(t)|| is constant, then ~a(t) is
always perpendicular to ~v(t)
And speaking of length, we can compute the length of a parametrized curve can be com-
puted by integrating its speed: the length of the parametrized curve ~r(t), a ≤ t ≤ b,
is

Length =

∫ b

a

||~v(t)|| dt =
∫ b

a

||~r ′(t)|| dt
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Vector fields

A vector field is a field of vectors, i.e., a choice of vector F (x, y) (or F (x, y, z)) in the plane
for every point in some part of the plane (the domain of F ), and similarly in 3-space.
We can think of F as F (x, y) = (F1(x, y), F2(x, y)) ; each coordinate of F is a function of
several variables. We can represent a vector field pictorially by placing the vector F (x, y) in
the plane with its tail at the point (x, y) . A vector field is therefore a choice of a direction
(and magmitude) at each point in the plane (or 3-space...). Such objects naturally occur
in many disciplines, e.g., a vector field may represent the wind velocity at each point in
the plane, or the direction and magnitude of the current in a river. Another important
class of examples are force fields: the vectors describe the direction and magnitude of a
force (gravity, friction, magnetism) acting at each point.
One of the most important classes of vector fields that we will encounter are the gradient
vector fields. If we have an (ordinary) function f(x, y, z) of several variables, then for each
point (x, y, z), ∇(f) can be thought of as a vector, which we have in fact already taken to
drawing with its tail at the point (x, y, z) (so that, for example, we can use it as a normal
vector for the tangent plane to the graph of f). Many vector fields are gradient vector
fields, e.g., (y, x) = ∇(xy) ; one of the questions we will need to answer is ‘How do you
tell when a vector field is a gradient vector field?’. We shall see several answers to this
question later on.

Flow lines / integral curves

Thinking of a vector field as a velocity field, like the current in a river, an object dropped
into the river will tendd to be carried along in the direction of the velocity field. That is
, the path that the object traces out will, at each point, have velocity equal to the value
of the vector field at that point. Such a curve we call an integral curve; it is the curve

γ(t) = (x(t), y(t) whose velocity γ′(t) equals the value of the vector field ~F at the point
γ(t); that is,

γ′(t) = ~F (γ(t)) for all t
.

This equation is a system of differential equations x′(t) = F1(x(t), y(t)) , y
′(t) = F2(x(t), y(t)),

where the Fi are the components of the vector field ~F (x, y) = (F1(x, y), F2(x, y)). Finding
solutions to such a system of equations in somewhat outside of the scope of our class!

We can solve some such equations, e.g., if ~F (x, y) = (1, x2 + 1) [or some other function
of x in the second coordinate], then we wish to solve x′(t) = 1 [so x(t) = t + c] and
y′(t) = (x(t))2 + 1 [ so y′(t) = (t+ c)2 + 1, which we can solve by integration].

A common technique for approximating flow lines is Euler’s method; starting at a point,
the vector field tells you which direction to go, so go in a straight line for a short amount
of time, then use the vector field at the new point to determine a new direction to go, and
repeat. Repeating this several times, letting the time interval you use each time decrease
to 0, you will find the paths you traverse will converge to an integral curve.

Line Integrals

We introduced vector fields F (x, y) in large part because these are the objects that we can
most naturally integrate over a (parametrized) curve. The reason for this is that along a
curve we have the notion of a velocity vector ~v at each point, and we can compare these
two vectors, by taking their dot product. This tells us the extent to which F points in the
direction of ~v. Integration is all about taking averages, and so we can think if the integral
of F over the curved C as measuring the average extent to which F points in the same
direction as C.
We can set this up as we have all other integrals, as a limit of sums. Picking points ~ci
strung along the curve C, we can add together the dot products F (~ci) • ( ~ci+1 − ~ci), and
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then take a limit as the lengths of the vectors ~ci+1 − ~ci between consecutive points along
the curve goes to 0. We denote this number by

∫

C

F • d~r

Such a quantity can be interpreted in several ways; we will mostly focus on the notion of
work. If we interpret F as measuring the amount of force being applied to an object at

each point (e.g., the pull due to gravity), then

∫

C

F •d~r measures the amount of work done

by F as we move along C. In other words, it measures the amount that the force field F
helped us move along C (since moving in the same direction, it helps push us along, while
when moving opposite to it, it would slow us down).
In the case that F measures the current in a river or lake or ocean, and C is a closed curve
(meaning it begins and ends at the same point), we interpret the integral of F along C
as the circulation around C, since it measures the extent to which the current would push
you around the curve C.

Computing using parametrized curves

Of course, as usual, we would never want to compute a line integral by taking a limit! But

if we use a parametrization of C, we can interpret

∫

C

F • d~r as an ‘ordinary’ integral. The

idea is that if we use a parametrization ~r(t) for C then F (~ci) • ( ~ci+1 − ~ci) becomes
F (~r(ti)) • (~r(ti+1)− ~r(ti))

But using tangent lines, we can approximate ~r(ti+1)− ~r(ti) by ~r′(ti)(ti+1 − ti) = ~r′(ti)∆y
.
so we can instead compute our line integral as

∫

C

F • d~r =

∫ b

a

F (~r(t)) • ~r′(t) dt
where ~r parametrizes C with a ≤ t ≤ b .

Some notation that we will occasionally use: If the vector field F = (P,Q,R) and ~r(t) =
(x(t), y(t), z(t)), then d~r = (dx, dy, dz), so F • d~r = Pdx+Qdy + Rdz . So we can write
∫

C

F • d~r =

∫ b

a

Pdx+Qdy +Rdz
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