
Math 107H

Topics since the second exam

Note: The final exam will cover everything from the first two topics sheets, as well.

The integral test

Idea:

∞
∑

n=1

an with an ≥ 0 all n, then the partial sums

{sN}∞N=1 forms an increasing sequence;
so converges exactly when bounded from above

If (eventually) an = f(n) for a decreasing function f : [a,∞) →R, then
∫ N+1

a+1

f(x) dx ≤ sN =

N
∑

n=a

an ≤

∫ N

a

f(x) dx

so
∞
∑

n=a

an converges exactly when

∫

∞

a

f(x) dx converges

Ex:

∞
∑

n=1

1

np
converges exactly when p > 1 (p-series)

Ex:
∞
∑

n=1

1

n(lnn)p
converges exactly when p > 1 (logarithmic p-series?)

These families of series make good test cases for comparison with more involved terms (see
below!)

Comparison tests

Again, think
∞
∑

n=1

an , with an ≥ 0 all n

Convergence depends only on partial sums sN being bounded

One way to determine this: compare series with one we know converges or diverges

Comparison test: If bn ≥ an ≥ 0 for all n (past a certain point), then

if

∞
∑

n=1

bn converges, so does

∞
∑

n=1

an ; if

∞
∑

n=1

an diverges, so does

∞
∑

n=1

bn

(i.e., smaller than a convergent series converges; bigger than a divergent series diverges)

More refined: Limit comparison test: an and bn ≥ 0 for all n,
an
bn

→ L

If L 6= 0 and L 6= ∞, then
∑

an anf
∑

bn either both converge or both diverge

If L = 0 and
∑

bn converges, then so does
∑

an

If L = ∞ and
∑

bn diverges, then so does
∑

an

(Why? eventually (L/2)bn ≤ an ≤ (3L/2)bn ; so can use comparison test.)

Ex:
∑

1/(n3 − 1) converges; L-comp with
∑

1/n3

∑

n/3n converges; L-comp with
∑

1/2n

∑

1/(n ln(n2 + 1)) diverges; L-comp with
∑

1/(n lnn)

Absolute convergence and alternating series
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A series
∑

an converges absolutely if
∑

|an| converges. If
∑

|an| converges

then
∑

an converges. A series which converges but does not converge absolutely is called

conditionally convergent.
An alternating series has the form

∑

(−1)nan with an ≥ 0 for all n.

If the sequence an is decreasing and has limit 0, then the alternating series test
states that

∑

(−1)nan converges. For example,
∑

∞

n=0(−1)n/(n + 1) converges, but not
absolutely, so it is conditionally convergent.

Even more, if the alternating series test implies that
∑

(−1)nan converges, then the

N -th partial sum, sN =
∑N

n=0(−1)nan, is within an+1 of the sum of the series (since all
of the later partial sums lie between sN and sN+1).

So, for example,
∑

∞

n=1(−1)n+1/n2 converges, and
∑99

n=1(−1)n+1/n2 is within 1/(100)2 =
1/10000 of the infinite sum. For the series

∑

∞

n=1 1/n
2, on the other hand, the integral test

can only conclude that its tail,
∑

∞

n=100 1/n
2, is at most 1/100 .

Power series

Idea: turn a series into a function, by making the terms an depend on x
replace an with anx

n ; series of powers
∞
∑

n=0

anx
n = power series centered at 0

∞
∑

n=0

an(x− a)n = power series centered at a

Big question: for what x does it converge? Solution from ratio test or root test

lim
∣

∣

∣

an+1

an

∣

∣

∣
= L, or lim |an|

1

n = L, set R =
1

L

then
∞
∑

n=0

an(x− a)n converges absolutely for |x− a| < R

diverges for |x− a| > R ; R = radius of convergence

Ex.:
∞
∑

n=0

xn =
1

1− x
; conv. for |x| < 1

Why care about power series?

Idea: partial sums
n
∑

k=0

akx
k are polynomials;

if f(x)=

∞
∑

n=0

anx
n, then the poly’s make good approximations for f

Differentiation and integration of power series

Idea: if you differentiate or integrate each term of a power series, you get a power
series which is the derivative or integral of the original one.

If f(x) =
∞
∑

n=0

an(x− a)n has radius of conv R,

then so does g(x) =

∞
∑

n=1

nan(x− a)n−1, and g(x) = f ′(x)

and so does g(x) =

∞
∑

n=0

an
n+ 1

(x− a)n+1, and g′(x) = f(x)

Ex: f(x) =

∞
∑

n=0

xn

n!
, then f ′(x) = f(x) , so (since f(0) = 1) f(x) = ex =

∞
∑

n=0

xn

n!
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Ex.:
1

1− x
=

∞
∑

n=0

xn, so − ln(1− x) =

∞
∑

n=0

xn+1

n+ 1
(for |x| < 1), so

(replacing x with −x) ln(x+ 1) =

∞
∑

n=0

(−1)nxn+1

n+ 1
, so

(replacing x with x− 1) ln(x) =
∞
∑

n=0

(−1)n(x− 1)n+1

n+ 1

Ex:. arctanx =

∫

1

1− (−x2)
dx =

∫ ∞
∑

n=0

(−x2)n dx =

∞
∑

n=0

(−1)nx2n+1

2n+ 1
(for |x| < 1

Taylor series

Idea: start with function f(x), find power series for it.

If f(x) =
∞
∑

n=0

an(x− a)n, then (term by term diff.)

f (n)(a) = n!an ; So an =
f (n)(a)

n!

Starting with f , define P (x) =
∞
∑

n=0

f (n)(a)

n!
(x− a)n ,

the Taylor series for f , centered at a.

Pn(x) =

n
∑

k=0

f (k)(a)

k!
(x− a)k , the n-th Taylor polynomial for f .

Ex.: f(x) = sinx, then P (x) =
∞
∑

n=0

(−1)n

(2n+ 1)!
x2n+1

Big questions: Is f(x) = P (x) ? (I.e., does f(x)− Pn(x) tend to 0 ?)
If so, how well do the Pn’s approximate f ? (I.e., how small is f(x)− Pn(x) ?)

Error estimates

f(x) =
∞
∑

n=0

f (n)(a)

n!
(x− a)n

means that the value of f at a point x (far from a) can be determined just from
the behavior of f near a (i.e., from the derivs. of f at a). This is a very powerful property,
one that we wouldn’t ordinarily expect to be true. The amazing thing is that it often is:

Tf,a(x) =
∞
∑

n=0

f (n)(a)

n!
(x− a)n ; Tn,f,a(x) =

n
∑

k=0

f (k)(a)

k!
(x− a)n ;

Rn(x)= f(x)−Tn,f,a(x) = n-th remainder term = error in using Tn,f,a to approx-
imate f

Taylor’s remainder theorem : estimates the size of Rn(x)
If f(x) and all of its derivatives (up to n+ 1) are continuous on [a, b], then

f(b) = Tn,f,a(b) +

∫ b

a

f (n+1)(t)

(n+ 1)!
(b− t)n .

How? By starting from f(b) = f(a)+

∫ b

a

f ′(t) dt, and repeatedly integrating by parts

the ‘wrong’ way! This in turn implies:

f(b) = Tn,f,a(b) +
f (n+1)(c)

(n+ 1)!
(b− a)n+1 , for some c in [a, b]
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i.e., for each x, Rn(x) =
f (n+1)(c)

(n+ 1)!
(x− a)n+1 , for some c between a and x

so if |f (n+1)(x)| ≤ M for every x in [a, b], then |Rn(x, a)| ≤
M

(n+ 1)!
(x− a)n+1 for

every x in [a, b]

Ex.: f(x)=sinx, then |f (n+1)(x)| ≤ 1 for all x, so |Rn(x, 0)| ≤
|x|n+1

(n+ 1)!
→ 0 as n → ∞

so sinx =

∞
∑

n=0

(−1)n

(2n+ 1)!
x2n+1 Similarly, cosx =

∞
∑

n=0

(−1)n

(2n)!
x2n

Using Taylor’s remainder to estimate values of functions:

ex =

∞
∑

n=0

(x)n

(n)!
, so e=e1=

∞
∑

n=0

1

(n)!

|Rn(1, 0)| =
f (n+1)(c)

(n+ 1)!
=

ec

(n+ 1)!
≤

e1

(n+ 1)!
≤

4

(n+ 1)!
since e < 4 (since ln(4) > (1/2)(1) + (1/4)(2) = 1)
(Riemann sum for integral of 1/x)

so since
4

(13 + 1)!
= 4.58×10−11,

e = 1 + 1 +
1

2
+

1

6
+

1

24
+

1

120
+ · · ·+

1

13!
, to 10 decimal places.

Other uses: if you know the Taylor series, it tells you the values of the derivatives at
the center.

Ex.: ex=

∞
∑

n=0

(x)n

(n)!
, so xex =

∞
∑

n=0

(x)n+1

(n)!
, so

15th deriv of xex , at 0, is 15!(coeff of x15) =
15!

14!
= 15

Substitutions: new Taylor series out of old ones

Ex. sin2 x =
1− cos(2x)

2
=

1

2
(1−

∞
∑

n=0

(−1)n(2x)2n

(2n)!

=
1

2
(1− (1−

(2x)2

2!
+

(2x)4

4!
−

(2x)6

6!
+ · · ·

=
2x2

2!
−

23x4

4!
+

25x6

6!
−

27x8

8!
+ · · ·

Integrate functions we can’t handle any other way:

Ex.: ex
2

=
∞
∑

n=0

(x)2n

(n)!
, so

∫

ex
2

dx =
∞
∑

n=0

(x)2n+1

n!(2n+ 1)

Polar coordinates

Idea: describe points in the plane in terms of (distance,direction).
r = (x2 + y2)1/2 = distance , θ = arctan(y/x) = angle with the positive x-axis.
x = r cos θ , y = r sin θ

The same point in the plane can have many representations in polar coordinates:
(1, 0)rect = (1, 0)pol = (1, 2π)pol = (1, 16π)pol = . . .

A negative distance is interpreted as a positive distance in the opposite direction (add
π to the angle):

(−2, π/2)pol = (2, π/2 + π)pol = (0,−2)rect
An equation in polar coordinates can (in principal) be converted to rectangular coords,

and vice versa:
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E.g., r = sin(2θ) = 2 sin θ cos θ can be expressed as

r3 = (x2 + y2)3/2 = 2(r sin θ)(r cos θ) = 2yx, i.e., (x2 + y2)3 = 4x2y2

Graphing in polar coordinates: graph r = f(θ) as if it were Cartesian; this allows us
to identify the values of θ (= sectors of the circle) where r is positive/negative and in-
creasing/decreasing (i.e., moving away from/towards the origin). Now wrap the Cartesian
graph around the origin, using the values of θ where f = 0 and f ′ = 0 as a guide.

Given an equation in polar coordinates
r = f(θ) , i.e., the curve (f(θ), θ)pol, θ1 ≤ θ ≤ θ2

we can compute the slope of its tangent line, by thinking in rectangular coords:
x = f(θ) cos θ, y = f(θ) sin θ , so
dy

dx
=

dy/dθ

dx/dθ
=

f ′(θ) sin θ + f(θ) cos θ

f ′(θ) cos θ − f(θ) sin θ

Arclength: the polar curve r = f(θ) is really the (rectangular) parametrized curve

x = f(θ) cos θ, y = f(θ) sin θ, and (x′(θ))2 + (y′(θ))2)1/2 = (f ′(θ))2 + (f(θ))2)1/2,

so the arclength for a ≤ θ ≤ b is

∫ b

a

(f ′(θ))2 + (f(θ))2)1/2 dθ

Area: if r = f(θ) , a ≤ θ ≤ b describes a closed curve (f(a) = f(b) = 0), then we can
compute the area inside the curve as a sum of areas of sectors of a circle, each with area
approximately

πr2(∆θ/2π) =
(f(θ))2

2
∆θ

so the area can be computed by the integral

∫ b

a

1

2
(f(θ))2 dθ

For the area between two polar curves: if f(θ) ≥ g(θ) for α ≤ θ ≤ β, then

Area =

∫ β

α

1

2
(f(θ))2 −

1

2
(g(θ))2 dθ

Fourier series

Idea: a different way to express a function as a sum of ‘nicer’ functions. The nice
functions this time, though, are trig functions (instead of powers)!

The other idea: Taylor series of f is built using information from only around the
center x = a of the series. For many functions, though, this tells us nothing (i.e., we get
no good approximation) further from a. For example, it can tell us nothing past a point of
discontinuity of f . A different approach uses integration to capture information ‘averaged’
over an entire interval.

Starting with a periodic function f , with period (for the sake of illustration, any
number can be used) 2π, so f(x+ 2π) = f(x) for every x, the idea is to express f as an
(infinite) sum of nice functions, also having period 2π. One natural choice to make is the
functions sin(nx) and cos(nx), so we will attempt to write

f(x) =
∞
∑

n=0

an sin(nx) + bn cos(nx)

Two immediate questions: does such a series converge, and can we actually do this?!
Usually, yes! Just as with Taylor series, the right question to ask is: what values must an
and bn have? The answer is obtained by integration!

Since

∫ π

−π

sin(mx) cos(nx) dx = 0 for all m and n (the integrands are odd functions!),

and
∫ π

−π

sin(mx) sin(nx) dx = 0 and

∫ π

−π

cos(mx) cos(nx) dx = 0 for m 6= n,
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while

∫ π

−π

sin(nx) sin(nx) dx =

∫ π

−π

cos(nx) cos(nx) dx =
π

2
(these can be verified by integration by parts!), this means that

∫ π

−π

f(x) sin(mx) dx

=
∞
∑

n=0

an

∫ π

−π

sin(nx) sin(mx) dx + bn

∫ π

−π

cos(nx) sin(mx) dx =
π

2
am and

∫ π

−π

f(x) cos(mx) dx

=

∞
∑

n=0

an

∫ π

−π

sin(nx) cos(mx) dx + bn

∫ π

−π

cos(nx) cos(mx) dx =
π

2
bm

and so an =
2

π

∫ π

−π

f(x) sin(nx) dx and bn =
2

π

∫ π

−π

f(x) cos(nx) dx .

So if we can express a function as an infinite sum of trig functions, this is what the
coefficients must be equal to! For example, if we compute this for the “square wave”, the
function f with f(x) = −1 for x ∈ [−π, 0) and f(x) = 1 for x ∈ [0, π) (and which then
repeats this pattern in both directions), some computation gives us that

an =
2(1− (−1)n)

nπ
and bn = 0 (since f is an odd function). Graphing the sums

N
∑

n=0

2(1− (−1)n)

nπ
sin(nx) for increasingly large values of N does give a sequence of

functions which give good approximations to f !

It is somewhat beyond the scope of our course to verify this, but the theory behind
all of this is that the coefficients we have computed succeed in giving the smallest possible
value for the integral

∫ π

−π

[f(x)−
N
∑

n=0

(an sin(nx) + bn cos(nx))]
2 dx

for every N , that these integrals decrease with N , and (usually!) converge to 0, implying

that over most of the interval [−π, π] the ‘error’
∣

∣f(x)−
N
∑

n=0

[an sin(nx)+ bn cos(nx)]
∣

∣ must

be small!
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