A selection of Exam 3 gractice problem sufficient.

1. Define the sequence a_n inductively, by $a_1 = 1$ and, for $n \ge 2$, $a_n = n + a_{n-1}$. Show that the statement

$$P(n)$$
: " $a_n = \frac{(n+3)(n-2)}{2}$ "

satisfies P(n) is true $\Rightarrow P(n+1)$ is true; show, however, that P(n) is <u>not</u> always true! Why does this <u>not</u> violate the Principle of Mathematical Induction?

If
$$a_1 = \frac{(n+3)(n-2)}{2}$$
 then

So $P(n)$ true $\frac{1}{2}$

Implies $P(n+1)$ true.

But! $q_1 = 1$ and

 $\frac{(n+3)(1-2)}{2} = \frac{4(n-2)}{2} = -2$

pm requires P(n) -> P(nn) and P(no) time for some noEN (e.g. Pas no=1). So the hypotheses of PMI is not satisfied.

4. Show using the "epsilon-delta" formulation of the limit, that $\lim_{x\to 2} x^3 - x^2 + 2x + 1 = 9$. We want Guer 800, to find a doo so That 0<1×-2/<0 implies /(x3-x2+2x+1)-9/<E Bt: $|(x^3-x^2+2x+1)-9|=|x^3-x^2+2x+8|$ $=|(x-2)(x^2+x+4)|=|x-2||x^2+x+4|$ To make this small (since (x2) can be assumed small) we need (x2+x+4) is not big. But if 1x-2/<1, say, then -1< x 2<1 @ 1< x<3, & 1=1.1<1.x<x2<3.x<3.3=9,80 2=1+1<x2+1<x2+x<x+3<9+3=12) Po 6=121+4 < x3+x+4 < 12+4=16, 8 6< x3+x+4 < 16 80 -16 (x3xx+4<16) 8 |x3xx+4| < 16, 80 set 6=mn{1, 163, then octx-2/cd implies (X-2/4) 80 (x2-x+4/<16) 80 $|(x^3-x^2+2x+1)-9|=|x-2||x^3+x+4|<|x-2|.16$ < 16.16 = E, as desired. 4

6. Show that if $f: \mathbb{R} \to \mathbb{R}$ is uniformly continuous, then the sequence of functions $f_n: \mathbb{R} \to \mathbb{R}$ defined by $f_n(x) = f(x + \frac{1}{n})$ converges uniformly to f.

f unt ds , & YESO 3 000 st. (x-y) co implus |fix-fy) < E.

we wat for EDO, an NEIN & That n=N =) I from -for / ce for all XEIR. Bot!

 $|f_n(x)-f(x)|=|f(x+h)-f(x)|$, so to ensure thus 15 < E we nearly need to have ((x+th)-x)=th/so

for all XER. But if we pick NEW on That

in < of (ie. N>t), then new implies that

 $f(x) = |f(x) - f(x)| = |f(x) - f(x)| < \varepsilon$ as desired.

So fast withruly . 14

B2: 2= 4B = 2-1=B = $(x^2-x)^2=3=x^4-2x^3+x^2 \Rightarrow x^4-2x^3+x^2-3=0$ fur= x4-2x3+x23 11 dr on [1,27] ad f(1)= 1-2+1-3 =-3<0 f(2) = 16-16+4-3=1>0 5 by IVI there is an at IU27 so that for)=3 Se $(a^2 \times 3^2 = 3)$. Both rate that since $x \in (0, 0)$, 2-a= 2(2-1)≥1.0 (since a=1≥0). & 22 is de positive number with (22 5)=3,5 22=13. Three is no radional runber with 22 at B, are then at Co, and flasoo. But the national noots them says that then a=Plq with p dividiz-3 and q dividige 1, 8 a=1,-1,3,~-3. Bit f(1)=f(-1)=3=0 ad f(3)=f(3) = 8282 28181-54+9-3=33:+0. So no rational

number how a = x+13. m

B3. To make f ds at x=0 we need In fix = a. By by C'Hapital, $f(x) = \int_{-70}^{10} \frac{\sin x - \tan x}{x^2} = \int_{-70}^{10} \frac{\cos x - \sec x}{2x} = \int_{-70}^{10} \frac{\cos x - \sec x}{2x} = \int_{-70}^{10} \frac{\cos x - \csc x}{2x} = \int_{-70}^{10} \frac{\cos x - \cot x}{2x} = \int_{-70}^{10} \frac{\cos x}{2x} = \int_{-70$ $= M_{\frac{1}{2}}(s_{1}x - \frac{2s_{1}x}{c_{3}s_{3}x}) = \frac{1}{2}(0) - \frac{10}{3}) = 0 (1)$ So $f(\omega) = 0$ makes f(x). Then $f(\omega) = \int_{-\infty}^{\infty} f(x) - f(\omega) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{f(x) - f(\omega)}{x^3} = \int_{-\infty}^{\infty} \frac{\cos x - \sec x}{x^3}$ $f(\omega) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{f(x) - f(\omega)}{x^3} = \int_{-\infty}^{\infty} \frac{\cos x - \sec x}{x^3}$ $= \lim_{N \to \infty} \frac{\sin x - \frac{2 \sin x}{\cos^3 x}}{6 x} = \lim_{N \to \infty} \left(1 - \frac{2}{\cos^3 x}\right) \left(\frac{\sin x}{x}\right)$ = Mob (1- arx) Mo 500 = 6 (1-3) Mo Gosx $=\frac{1}{6}(1-\frac{2}{3})(\frac{1}{1})=\frac{1}{6}(-1)\frac{2}{6}$ By. Since Kn = a, dn = xh od R(f, P, Fa7) = R(g, P, Fd) , then $t = \int_{a}^{b} fundx > \int_{a}^{b} g(x) dx = M$, setting $\xi = L - M$ we can find a P = that | R(f, P, 7617) - L/ < 9/2 and | R(f, P, fan3) - M/6/2 (by finders graditions a Do so That IPILED always works) Bot then L-82 < R(A, P, 8623) < R(9, P, 8433) < M+8/2, ad So L-M< 4+6/2= 8, 8 E< E a contrad, ctum. & L)M mut beforke, and Safarder & Sagurda.

5. Show that if $f,g:[a,b]\to\mathbb{R}$ are a pair of bounded functions, and U(h) denotes the upper Riemann integral of h over the interval [a, b], then

$$U(f+g) \le U(f) + U(g) .$$

We wish to show that the sup of U(f+g,P), taken over all partitions of [a,b], is \leq U(f) + U(g). We can establish this by showing that U(f) + U(g) is an <u>upper bound</u> for the set $\{U(f+g,P): P \text{ a partition of } [a,b]\}$, that is, $U(f+g,P) \leq U(f) + U(g)$ for every partition P.

But we know that $U(f,Q) \leq U(f)$ and $U(g,R) \leq U(g)$ for any partitions Q,R of [a,b], since U(f) and U(g) are the suprema of such upper Riemann sums. So in particular we have $U(f, P) \le U(f)$ and $U(g, P) \le U(g)$.

Our intended result then follows if we show that $U(f+g,P) \leq U(f,P) + U(g,P)$, since then $U(f+g,P) \leq U(f,P) + U(g,P) \leq U(f) + U(g)$, establishing that U(f) + U(g) is an upper bound for the U(f+g,P), as desired. But $U(f+g,P) \leq U(f,P) + U(g,P)$ follows from the fact that

$$U(f+g,P) = \sum_{i} \sup\{(f+g)(x) : x \in [x_i, x_{i+1}]\}(x_{i+1} - x_i)$$

and, for each i, we have

 $\sup\{(f+g)(x) : x \in [x_i, x_{i+1}]\}$

$$\leq \sup\{f(x) : x \in [x_i, x_{i+1}]\} + \sup\{g(x) : x \in [x_i, x_{i+1}]\} = F + G;$$

this is, effectively, from an old problem set, although we can see this directly, since $f(x) \leq A$ and $g(x) \leq B$ for every $x \in [x_i, x_{i+1}]$ (since they are suprema), so (f+g)(x) = $f(x) + g(x) \le A + B$ for every $x \in [x_i, x_{i+1}]$, making A + B an upper bound, so it is \ge the supremum.

Putting this all together, we find that since

$$\sup\{(f+g)(x) : x \in [x_i, x_{i+1}]\}\$$

$$\leq \sup\{f(x) : x \in [x_i, x_{i+1}]\} + \sup\{g(x) : x \in [x_i, x_{i+1}]\},\$$

for every i, we have

$$U(f+g,P) = \sum_{i} \sup\{(f+g)(x) : x \in [x_i, x_{i+1}]\}(x_{i+1} - x_i)$$

$$\leq \sum_{i} [\sup\{f(x) : x \in [x_i, x_{i+1}]\} + \sup\{g(x) : x \in [x_i, x_{i+1}]\}](x_{i+1} - x_i)$$

 $\leq \sum_{i} [\sup\{f(x) : x \in [x_{i}, x_{i+1}]\} + \sup\{g(x) : x \in [x_{i}, x_{i+1}]\}](x_{i+1} - x_{i})$ $= \sum_{i} [\sup\{f(x) : x \in [x_{i}, x_{i+1}]\}](x_{i+1} - x_{i}) + \sum_{i} [\sup\{g(x) : x \in [x_{i}, x_{i+1}]\}](x_{i+1} - x_{i})$ = U(f, P) + U(g, P).

so $U(f+g,P) \leq U(f,P) + U(g,P)$ for every partition P, so $U(f+g,P) \leq U(f) + U(g)$ for every partition P, so $U(f+g) \le U(f) + U(g)$.

C1. (with some names changed...) Show that if a < b < c and if $f: [a, b] \to \mathbb{R}$ and $g:[b,c]\to\mathbb{R}$ are both continuous functions, and f(b)=g(b), then the function $h:[a,c]\to\mathbb{R}$ defined by

$$h(x) = \begin{cases} f(x) & \text{if } x \le b \\ g(x) & \text{if } x \ge b \end{cases}$$

is continuous at x = b. Why is it also continuous at every other point in [a, c]?

To establish that h is continuous at x = b, we wish to show that for any $\epsilon > 0$ there is a $\delta > 0$ so that $|x - a| < \delta$ implies that $|h(x) - h(a)| < \epsilon$. But since f is countinuous at x = b(which is the right endpoint of its interval of definition), we know that $\lim_{x \to a} f(x) = f(b)$, so for our $\epsilon > 0$ above, there is a $\delta_1 > 0$ so that $|x-b| < \delta + 1$ and x < b we have $|f(x)-f(b)|<\epsilon$. Also, since g is continuous at b (which is the left endpoint of its interval

of definition), we know that $\lim_{x\to b^+} g(x) = g(b)$, so for our $\epsilon > 0$ above, there is a $\delta_2 > 0$ so that $|x-b| < \delta_2$ and x > b we have $|g(x) - g(b)| < \epsilon$.

But since f(b) = h(b) = g(b), and h(x) = f(x) when x < b and h(x) = g(x) when x > b, we have actually established that if $|x - b| < \delta_1$ and x < b then $|h(x) - h(b)| < \epsilon$, and if $|x - b| < \delta_2$ and x > b then $|h(x) - h(b)| < \epsilon$. Note that if x = b, then $|h(x) - h(b)| = |h(b) - h(b)| = 0 < \epsilon$ automatically. So, if we set $\delta = \min\{\delta_1, \delta_2\} > 0$, then $|x - b| < \delta$ implies that x = b or $|x - b| < \delta_1$ and x < b or $|x - b| < \delta_2$ and x > b; in every case, we can conclude that $|h(x) - h(b)| < \epsilon$. SO we have found a $\delta > 0$ so that $|x - b| < \delta$ implies tht $|h(x) - h(b)| < \epsilon$. So h is continuous at x = b.

For every other point $d \in [a, c]$, either d < b or d > b. If d < b, then $b - d = \delta_1 > 0$, and so $|x - d| < \delta_1$ implies that x < b, so h(x) = f(x). So if we have an $\epsilon > 0$, then the continuity of f at x = d implies that there is a $\delta_2 > 0$ so that $|x - d| < \delta_2$ and $x \in [a, b]$ implies that $|f(x) - f(d)| < \epsilon$. Then, setting $\delta = \min\{\delta_1, \delta_2\} > 0$, if $|x - d| < \delta$, then $|x - d| < \epsilon_1$ so x < b and so $x \in [a, b]$, so f(x) = h(x), and so since $|x - d| < \delta_2$, as have $|h(x) - h(d)| = |f(x) - f(d)| < \epsilon$. So h is continuous at x = d.

The case of d>b is essentially identical. If d>b, then $d-b=\delta_1>0$, and so $|x-d|<\delta_1$ implies that x>b, so h(x)=g(x). So if we have an $\epsilon>0$, then the continuity of g at x=d implies that there is a $\delta_2>0$ so that $|x-d|<\delta_2$ and $x\in[a,b]$ implies that $|g(x)-g(d)|<\epsilon$. Then, setting $\delta=\min\{\delta_1,\delta_2\}>0$, if $|x-d|<\delta$, then $|x-d|<\epsilon_1$ so x>b and so $x\in[b,c]$, so g(x)=h(x), and so since $|x-d|<\delta_2$, as have $|h(x)-h(d)|=|g(x)-g(d)|<\epsilon$. So h is continuous at x=d.