1. Define the sequence a,, inductiVely, by a1 = 1 and, for n > 2, a,, = n + Gn—1. Show that
the statement
(n+3)(n-2)
2
satisfies P(n) is true = P(n + 1) is true; show, however, that P(n) is not always true!
Why does this not violate the Principle of Mathematlcal Induct10n7
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4. Show using the “epsilon-delta” formulation of the limit, that lim 2% — 2% +2¢ +1=9.
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6. Show that if f: R — R is uniformly continuous, then the sequence of functions

1
fn iR — R defined by fn(z) = f(z+ ) converges uniformly to f.
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5. Show that if f, g : [a,b] — R are a pair of bounded functions, and U(h) denotes the
upper Riemann integral of h over the interval [a, ], then

Uf+9) <Uf)+Ulg) .

We wish to show that the sup of U(f + g, P), taken over all partitions of [a, ], is <
U(f)+U(g). We can establish this by showing that U(f) + U(g) is an upper bound for the
set {U(f +g,P) : P a partition of [a,0]} , that is, U(f + g, P) < U(f) + U(g) for every
partition P.

But we know that U(f,Q) < U(f) and U(g, R) < U(g) for any partitions @, R of [a,b],
since U(f) and U(g) are the suprema of such upper Riemann sums. So in particular we have
U(f,P) <U(f) and U(g, P) < U(g).

Our intended result then follows if we show that U (f+g9,P)<U(f, P)+Ul(g, P), since
then U(f + g, P) < U(f, P) + U(g, P) < U(f) + Ulg), establishing that U(f)+U(g) is an
upper bound for the U(f + g, P), as desired. But U(f + g, P) < U(f, P)+ U(g, P) follows
from the fact that

U(f +9,P) = 2oysup{(f + 9)(2) : @ € [mi, 2051]}(@i1 — 27)

and, for each ¢, we have

sup{(f +g)(z) : @ € [, 3331}

<sup{f(z) : z € [z, zi11]} +sup{g(z) : 2 € [z, 2,4]} =F+G ;

this is, effectively, from an old problem set, although we can see this directly, since
f(z) < A and g(z) < B for every z € [z, 2;41] (since they are suprema), so (f + g)(z) =
J(z) +g(z) < A+ B for every z € [z;,2,,1], making A + B an upper bound, so it is > the
supremum.

Putting this all together, we find that since
sup{(f +g)(z) : @ € [, Ti14]}
<sup{f(z) : =€ [z, 2]} +sup{g(z) : z € [z, 2i11]},
for every ¢, we have
U(f+9.P) =32 sup{(f +9)(z) : z € [z, 2001] i1 — 2,)
< 2ufsup{ /(@) © @ € [2i, 2]} +sup{g(s) + @ € [m, 201} (2041 — 2)
=2 ilsup{f(z) : z € [z, Tip ] H(@i — @) + 3, [sup{g(z) : € [Ti, Tig 1]} (Tig1 — 22)
=U(f,P)+U(g, P),
so U(f+g,P) < U(f,P)+Ul(g, P) for every partition P, so U(f+g,P)<U(f)+U(g)
for every partition P, so U(f + g) < U(f) +Ulyg) .

Cl. (wuth some names changed...) Show that if & < b < ¢ and if f - [a,b] = R and
g+ [b,c] = R are both continuous functions, and f(b) = g(b), then the function h : [a,c] — R

defined by
z) fax<b
Moy = {70 s
glz) ifz>0b
is continuous at z = b. Why is it also continouous at every other point in la,c]?
'To establish that A is continuous at 2 = b, we wish to show that for any € > 0 there is a

0 > 0 so that |z — a| < &§ implies that |k(z) — k(a)| < e. But since [ is countinuous at = b
(which is the right endpoint of its interval of definition), we know that Iirbn flz) = f(b)
T—0"

)

so for our ¢ > 0 above, there is a 6; > 0 so that [z —b] < § + 1 and z < b we have
|f(z) — f(b)] < e Also, since g is continuous at b (which is the left endpoint of its interval

1



of definition), we know that lilglJr g(z) = g(b), so for our € > 0 above, there is a dy > 0 so
T

that [z — b < d, and z > b we have |g(z) — g(b)] < .

But since f(b) = h(b) = g(b), and h(z) = f(z) when = < b and h(z) = g(z) when z > b,
we have actually established that if [z — b < & and @ < b then |h(z) — h(b)| < ¢, and if
|z — b < & and z > b then |h(z) — h(b)| < e. Note that if z = b, then \h(z) — h(b)| =
|h(b) — h(b)] = 0 < ¢ automatically. So, if we set § = min{dy,dy} > 0, then |x — b| < 6
implies that z =b or |z — b < & and z < bor |z — b| < dy and z > b; in every case, we can
conclude that [h(z) — h(b)| < e. SO we have found a § > 0 so that |z — b| < § implies tht
|h(z) — h(b)| < €. So h is continuous at z = b.

For every other point d € [a,¢], either d < bord > b. If d < b, then b — d = 61 > 0,
and so |z — d| < 0; implies that = < b, so A(z) = f(z). So if we have an ¢ > 0, then the
continuity of f at « = d implies that there is a 6, > 0 so that |z — d| < 6, and = € [a, b]
implies that |f(z) — f(d)] < e. Then, setting § = min{d;,d,} > 0, if |z — d| < 6, then
|z —d| < e1s02 <bandsoz € [a,b],so f(z) = h(z), and so since |z — d| < 0, as have
|h(z) = h(d)| = | f(z) — f(d)] < e. So h is continuous at z = d.

The case of d > b is essentially identical. If d > b, then d—b = ¢, > 0, and so |z — d| < &
implies that 2 > b, so h(z) = g(z). So if we have an ¢ > 0, then the continuity of g at x = d
implies that there is a d; > 0 so that |z —d| < &, and z € [a, b] implies that |g(x) —g(d)] <e.
Then, setting 6 = min{d;,d2} > 0,if |z —d| < 6, then |z —d| < e; so 2 > b and s0 z € b, ],
so g(z) = h(z), and so since |z — d| < &, as have |h(z) — h(d)| = |g(z) — g(d)] < e. So his
continuous at z = d.



