
Math 314

Topics for third exam

Technically, everything covered by the �rst two exams plus

Chapter 4: Eigenvalues

x1: The beginning

For A an n�n matrix, v is an eigenvector (e-vector, for short) for A if v 6= 0 and
Av = �v for some (real or complex, depending on the context) number �. � is called the
associated eigenvalue for A.

A matrix which has an eigenvector has lots of them; if v is an eigenvector, then so is
2v, 3v, etc. On the other hand, a matrix does not have lots of eigenvalues:

If � is an e-value for A, then (�I�A)v=0 for some non-zero vector v. So N (�I�A) 6=
f0g, so det(�I � A) = 0. But det(tI � A) = pA(t), thought of as a function of t, is a
polynomial of degree n, so has at most n roots. So A has at most n di�erent eigenvalues.

pA(t) = det(tI � A) is called the characteristic polynomial of A.

N (�I � A) = E�(A) is (ignoring 0) the collection of all e-vectors for A with e-value
�. it is called the eigenspace (or e-space) for A corresponding to �. An eigensystem for a
(square) matrix A is a list of all of its e-values, along with their corresponding e-spaces.

One somewhat simple case: if A is (upper or lower) triangular, then the e-values for
A are exactly the diagonal entries of A, since tI � A is also triangular, so its determinant
is the product of its diaginal entries.

We call dimN (�I�A) the geometric multiplicity of �, and the number of times � is a
root of pA(t) (= number of times (t� �) is a factor) = m(�) = the algebraic multiplicity
of � .

Some basic facts:

The number of real eigenvalues for an n� n matrix is � n .

counting multiplicity and complex root the number of eigenvalues =n .

For every e-value �, 1� the geometric multiplicity � m(�)

If the matrix A is symmetric (i.e., AT = A), then every eigenvalue of A is a real
number (i.e., every complex root of pA(t) is actually real).

x2: Similarity and diagonalization

TRhe basic idea: to understand a Markov chain xn = Anx0, you need to compute
large powers of A. This can be hard! There ought to be an easier way. Eigenvalues (or
rather, eigenvectors) can help (if you have enough of them).

The matrix A =

�
3 2
3 4

�
has e-values 1 and 6 (Check!) with corresponding e-vectors

(1,�1) and (2,3) . This then means that�
3 2
3 4

��
1 2
�1 3

�
=

�
1 2
�1 3

��
1 0
0 6

�
, which we write AP = PD ,

where P is the matrix whose colummns are our e-vectors, and D is a diagonal matrix.
Written slightly di�erently, this says A = PDP�1 .
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We say two matrices A and B are similar if there is an invertible matrix P so that
AP = PB . (Equivalently, A = PBP�1, or B = P�1AP .) A matrix A is diagonalizable

if it is similar to a diagonal matrix.
Why do we care? It is easy to check that if A = PBP�1, then An = PBnP�1 . If Bn

is easy to calculate (e.g., if B is diagonal; Bn is then also diagonal, and its diagonal entries
are the powers of B's diagonal entries), this means An is also fairly easy to calculate!

Also, if A and B are similar, then they have the same characteristic polynomial, so
they have the same eigenvalues. They do, however, have di�erent eigenvectors; in fact, if
AP = PB and Bv = �v, then A(Pv) = �(Pv), i.e., the e-vectors of A are P times the
e-vectors of B .

These facts in turn tell us when a matrix can be diagonalized. Since for a diagonal
matrix D, each of the standard basis vectors ei is an e-vector, Rn has a basis consisting
of e-vectors for D. If A is similar to D, via P , then each of Pei = ith column of P is an
e-vector. But since P is invertible, its columns form a basis for Rn, as well. SO there is
a basis consisting of e-vectors of A. On the other hand, such a basis guarantees that A is
diagonalizable (just run the above argument in reverse...), so we �nd that:

(The Diagonalization Theorem) An n � n matrix A is diagonalizable if and only if
there is basis of Rn consisting of eigenvectors of A.

And one way to guarantee that such a basis exists: If A is n � n and has n distinct
eigenvalues, then choosing an e-vector for each will always yield a linear independent
coillection of vectors (so, since there are n od them, you get a basis for Rn). So:

If A is n � n and has n distinct (real) eigenvalues, A is diagonalizable. In fact, the
dimensions of all of the eigenspaces for A (for real eigenvalues �) add up to n if and only
if A is diagonalizable.

x2: Discrete dynamical systems

A discrete dynamical system (DDS) (= a system that moves in discrete steps) is a
generalization of the Markov processes we studied before. It consists of an initial state x0
and a transition matrix A . Starting at x0, at every tick of the clock, we take the vector
we are standing on and mutliply by A, so after n ticks, we are standing on xn = Anx0 .

The main question we wish to study is: what happens to xn as n gets larger and larger?
It turns out that this question has a fairly straightforward answer when A is diagonalizable.
The answer depends upon the value of the spectral radius of A, �(A), which is de�ned to
be maxfj�ijg, where �i ranges over all of the e-values of A. In essence, it is the size of the
`largest' eigenvalue of A. Then we have:

If A is diagonalizable, and x0 is an initial state, then

If �(A) < 1, then jjAnx0jj goes to 0 as n goes to 1 .
If �(A) = 1, then for some N , jjAnx0jj � N for all n .
If �(A) = 1, A has e-value 1, and every other e-value has absolute value less than 1,

then Anx0 has a limit x1 as n ! 1, and either Ax1 = 0 or Ax1 = x1 . (Usually, it
equals x1 .)

If �(A) > 1, then for nearly every x0, jjA
nx0jj goes to 1 as n goes to 1

A matrix A is called defective if for some e-value �, dimN (�I�A) <m(�) . It is fairly
easy to show that a matrix is defective if and only if it is not diagonalizable (since the sum
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of dimensions of e-spaces will then be less than n).
What do we do if A isn't diagonalizable? Some of the statements (when �(A) = 1)

fail to be true. But it turns out that the other two statements are true. This can be shown
using Jordan normal forms

The idea is that being diagonalizable says that A is similar to a very simple matrix.
It turns out that every matrix is similar to a `kind of' simple matrix. A Jordan block J�(k)
is a k � k matrix most of whose entries are 0, except along the diagonal the entires are
equal to �, and just above the diagonal they are 1.

Every matrix is similar to a block diagonal matrix, i.e., a matrix whose entries are all
0 outside of a collection of square blocks whose diagonals sit on the main diagonal of A.
Each block is a Jordan block, with possibly di�erent �'s. This matrix is the Jordan normal

form for A. It is unique, up to reordering the blocks on the diagonal.
We can still talk about the spectral radius �(A) of a matrix, even if it isn't diagonal-

izable. With Jordan normal forms, it is possible to show that the �rst and last assertions
of our theorem hold true, for every matrix A.

Chapter 5: Norms and inner products (again)
x1: Norms

We have found the notion of the length of a vector in Rn useful in several circumstances
so far, now it is time to extend this concept to more of our favorite vector spaces!

The idea of this section is that our familiar notion of length satis�es some fairly natural
properties. What we will now do is assert that any function satisfying those properties is
something that we can reasonably called a notion of length, or a norm.

A norm on a vector space V is a function jj � jj:V ! R which satis�es:

(1) for every v in V , jjvjj �0, and jjvjj = 0 if and only if v = 0
(2) for every v in V and c in R, jjc � vjj = jcj � jjvjj
(3) for every v and w in V , jjv + wjj � jjvjj+ jjwjj (Triangle Inequality)

The pair (V,jj � jj) is called a normed linear space.
For example, on Rn there are lots of di�erent norms: for every p � 1, the function

jjvjjp = (jv1j
p + � � �+ jvnj

p)1=p

is a norm, called the p-norm . There is a similar norm for `p =1':
jjvjj1 =maxfjv1j; : : : ; jvnjg

Also, for C[a; b] = the cts fcns from [a; b] to R,

jjf jj =

Z b

a

jf(x)j dx

is a norm. For many of these, especially the p-norms, proving the triangle inequality
takes some work!

With a norm we can talk about convergence: vn ! v as n ! 1 means (as with the
usual norm) that jjvn � vjj ! 0 as n!1 .

We can also talk about the ball of radius r around a vector v; it is all of the vectors
w with jjw � vjj < r .

x2: Inner products
Just as with norms, we can adapt our notion of an innner product < �; � > to more gen-

eral vector spaces, by taking some of its familiar properties and making these a de�nition
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of an inner product!
An inner product on a vector space V is a function < �; � > which takes pairs of vectors

and hands you a number, which satis�es:
(1) for every v in V , < v; v >� 0, and < v; v >= 0 if and only if v = 0
(2) for every v and w in V , < v;w > = < w; v >

(3) for every v and w in V , and c in R, < cv; w > = c < v; w >

(4) for every u, v, and w in V , < u+ v; w > = < u;w > + < v;w >

The pair (V,< �; � >) is called an inner product space.
Again, it turns out that there are lots of inner products on Rn, besides the usual one.

For example, on R2, < v;w >= 2v1w1+5v2w2 is an inner product; you can check that the
four properties hold. More generally, for any invertible n� n matrix A, the function

< v;w >A = < Av;Aw > = vT (ATA)w
is an inner product on Rn. On C[a; b],

< f; g > =

Z b

a

f(x)g(x) dx

is an inner product.

It turns out that every inner product on V can be used to de�ne a norm on V , by
doing what we know is true for the usual norm and inner product:

De�ne jjvjj = (< v; v >)1=2 . Property (1) for an inner product implies that property
(1) for a norm holds; property (3) for an inner product implies property (2) for a norm
holds; and �nally, property (3) for this norm hold because

(< v;w >)2 �< v; v >< w;w >

This is our (old) Schwartz inequality; but a look at the reasons why this was true for
the ordinary inner product will convince you that all we need to know was the properties
(1)-(4) for the inner product. So our argument there carries over to this more general
setting without any change!

So every inner product can be used to de�ne a norm. But not every norm comes
from an inner product! There are several properties (for example, jju+ vjj2 + jju� vjj2 =
2jjujj2+2jjvjj2) which one can show always hold, if your norm comes from an inner product!
By evaluating both sides suing speci�c vectors, however, one can show that such equalities
don't hold, showing that the norms in question do not come from inner products!

Just as with the ordinary inner product, we say that two vectors v and w are orthogonal
if < v;w >=0.

If the vectors v1; : : : ; vn are all non-zero and all orthogonal to one another, and v is
in the span of the vi's then it is easy to show that

v =
< v1; v >

< v1; v1 >
v1 + � � �+

< vn; v >

< vn; vn >
vn

In fact,m this is the only way to write v as a linear combination of the vi's, implying
that the vi's are linearly independent!
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