Math 208H
Topics for the second exam

(Technically, everything covered on the first exam, plus)

Vector-valued functions
Basic idea: think of a parametric curve in 3-space.

7(t) = (2(8), y(t), 2(1)) S o

If we think of ¢ as time, then what 7" does is give us a point in 3-space at each moment of
time. Thinking of 7 as the position of a particle, the particle sweeps out a path or curve,
C, in 3-space as time passes.

Example: [lines; they can be described as having a starting place and a direction they
travel, and so can be parametrized by 7(t) = P + tU, where P is the starting point and ¢
is the direction (for example, the difference of two points lying along the line).

Vector function calculus

We can extend the concept of a limit to vector-valued functions by thinking in terms of
distance; 7(t) approaches L as t goes to a if the distance between 7(t) and L tends to 0.
This in turn is the same as insisting that each coordinate function z(t),y(t), z(t) tends to
the corresponding corrdinate of L as t goes to a. So in particular, a vector function 7(t) is
continuous at a if each of its coordinate functions x,y, z are continuous at a.

When we think of ¢ as time, we can imagine ourselves as travelling along the parametrized
curve 7(t), and so at each point we can make sense of both welocity and acceleration.
Velocity, which is the instantaneous rate of change of position, can be calculated as the
limit of the usual difference quotient, using the ideas above; but since limits can really be

computed one coordinate at a time, the derivative of 7(t) = x(t), y(t), 2(t) is ¥(t) = 7 (¢)

= 2'(t),y'(1), (1) -
Some basic properties:

(7+35)'(t) = 7 (t) +5(t)
(f@)r(t)" = f1(0)7(t) + f()F (t)
("o 5)'(t) =(t) e 5(t) +7(t)  §'(¢)
(7 5)'(t) = 7 (t) x 5(t) + 7(t) x §'(t)
Similarly, acceleration can be computed as a(t) = 7' (t) = x”(t),y" (t), 2" (t) ; it is the rate
of change of the velocity of 7(t) .
One useful fact: if the length of the velocity (i.e., its speed), ||U(t)|| is constant, then @(t)
is always perpendicular to ¥(t)
And speaking of length, we can compute the length of a parametrized curve by integrating
its speed: the length of the parametrized curve 7(t), a <t < b, is

b

Length = / |5(t)|| dt

Since vector functions have derivatives, which are also vector functions, they therefore have
antiderivatives; R(t) is the antiderivative of #(¢) if R'(t) = 7(t). Since derivatives can be
computed by taking the derivative of each coordinate function, its antiderivative can be
computed by taking the antiderivative of each coordinate.

Motion in space

Newton’s second law states that the (mass times the) acceleration of a particle is equal to
the (vector) sum of all of the forces acting on the particle. This means that if we know
all of the forces acting on an object, we know its acceleration. But if we know an object’s
acceleration (and it’s velocity for one t), we can recover its velocity by integrating:
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(1) = (to) + [, 7 (t) dt

Then, in turn, if we know the position of the object at one ¢, we can recover the position
of the object, by integrating (again):

P(t) = (to) + [1 7 (t) dt

So knowing the forces acting on an object, together with its initial position and initial
velocity, allows us to determine its position at any time ¢.

Typical forces we may encounter:
F, = force due to gravity = (0,0, —g) , where g = 32 ft/sec? = 9.8 m/sec?
F,, = force due to the wind = any particular constant vector v

Functions of Several Variables

Functions of two variables

Function of one variable: one number in, one number out. Picture a black box; one input
and one output.

Function of several variables: several inputs, one output. Picture a quantity which depends
on several different quantities. E.g., distance from the origin in the plane:

distance = d = /a2 + y2

depends on both the z- and y-coordinates of our point.

Our goal is to understand functions of several variables, in much the same way that the
tools of calculus allow us to understand functions of one variable. And our basic tool is
going to be to think of a function of several variables as a function of one variable (at a
time!), s ithat we can use those tools to good effect.

Graphs of functions of two variables

We know what such a graph is; but how do we see what it looks like? One answer is to
think of it as a function of one variable (at a time!).

If we set y = c=constant, and look at z = f(x,c) , we are looking at a function of one
variable, x, which we can (in theory) graph. This graph is what we would see when the
plane y = ¢ meets the graph z = f(x,y) ; this is a (vertical) cross section of our graph
(parallel to the plane y = 0, the zz-plane). Similarly, if we set 2 = d=constant, and look
at the graph of z = f(d,y) (as a function of y), we are seeing vertical cross sections of our
original graph, parallel to the yz-plane. Several of these x- and y-cross sections together
can give a very good picture of the general shape of the graph of our function z=f(x,y) .
Some of the simplest functions to describe are linear functions; functions havng equations
of the form z=ax + by 4+ ¢ . Their cross sections are all lines; the cross sections x =const
all have the same slope b, and the y-cross sections all have slope a.

Another simple type of function is cylinders; these are functions like f(z,y) = y* which,
although we think of them as functions of x and y, the output does not depend on one of
the inputs. Cross sections of such functions, setting equal to a constant whichever variable
does not change the value of the function, will all be identical, so the graph looks likecopies
of the exact same function, stacked side-by-side.

Contour diagrams

The cross sections of the graph of a function are obtained by slicing our graph with vertical
planes (parallel to one of our coordinate planes). But we could also use horizontal planes
as well, that is, the planes z=constant. In other words, we graph f(x,y) = ¢ for different
values of the constant c. These are called contour lines or level curves for the function f,
since they represent all of the points on the graph of f which lie on the same horizontal level
(the term contour line is borrowed from topographic maps; the lines represent the level
curves of the height of land). These have the advantage that they can be graphed together
in the zy-plane, for different values of ¢, because the level curves corresponding to different
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values of ¢ cannot meet (a point (x,y) on both level curves would satisfy ¢ = f(z,y) = d,
so f would not be a function....)

A collection of level curves also gives a good picture of what the graph of our function f
looks like; we can imagine wandering through the doman of our function, reading off the
value of the function f by looking at what level curve we are standing on. We usually draw
level curves for equally spaced values of ¢; that way, if the level curves are close together,
we know that the function is changing values rapidly in that region, while if they are far
appart, the values of the function are not varying by a large amount in that area.

~Zz=1 4 7=2

z=2

(1=

_
&g‘)

We usually, for convenience, draw the level curves of f on a single zy-plane (since we can
keep them somewhat separate), labelling each curve with its z-value. We could reconstruct
a picture of the graph of f by simply drawing the level curve f(z,y) = ¢ on the horizontal
plane z = ¢ in 3-space.

V

Functions of more than two variables

There is of course no reason to stop with two variables for a function. An expression like
F =F(M,m,r) = GMm/r? can be thought of as a function describing F' as a function of
M, m, and r (and G!). When we think of the graph of this function (as a function of the
first three variables), its graph will live in 4-space! However, we can still get an impression
of what the function looks like, by graphing F'(M, m,r) = ¢ = constant, for various values
of c. These are level surfaces for the function f. We can get a picture of what the level
surfaces look like by taking cross sections! Or we could look at each level surface’s level
curves.

Differentiation
Partial derivatives
In one-variable calculus, the derivative of a function y = f(z) is defined as the limit of
difference quotients:
h) —
o) = i L1 =110

and interpreted as an instantaneous rate of chage, or slope of tangent line.

But a function of two variables has two variables; which one do you increment by h to get
your difference quotient? The answer is both of them, one at a time. In other words, a
function of two variables z = f(x,y) has two (partial) derivatives:

oo~ i h 1 Gy~ i h

0
Essentially, 8_f is the derivative of f, thought of solely as a function of x (i.e., pretending
x

0
that y is a constant), while 8_f is the derivative of f, thought of solely as a function of y.
Y

Different viewpoint, same result:



For one variable calculus f’(x) is the slope of the tangent line to the graph of f. As we
shall see, The graph of a function of two variables has something we would naturally call
a tangent plane, and one way to describe a plane is by computing its x- and y-slopes, i.e,
the rate of change of f solely in the z- and y- directions. But this is precisely what the

limits above calculate; so = will be the x-slope of the tangent plane, and — will be the

Oox dy
y-slope.
The basic picture here is:

Just as with one variable, there are lots of different notations for describing the partial
derivatives: for z = f(x,y),
0 0 0z 0
T I ==
x x x x
The algebra of partial derivatives
The basic idea is that since a partial derivative is ‘really’ the derivative of a function of
one variable (the other ‘variable’ is really a constant), all of our usual differentiation rules
can be applied. so, e.g,

= Dy(f) = Da(2) = fo = 22

D= =5+
%(c-f)— o s n=cil

(f 9) = gngrfg—z (etc.)
a—x<f/g>=<3f 9 190)/g" (etc.)
(7)) = h’(f(x,y»% (etc)

In the end the way we should get used to taking a partial derivative is exactly the same

as for functions of one variable; just read from the outside in, applying each rule as it

is appropriate. The only difference now is that when taking a derivative of a function
= f(z,y), we need to remember that

0 0
3_x(y) =0 and a—y(m) =0

Tangent planes

In one-variable calculus, we can convince ourselves that a function has a tangent line at
a point by zooming in on that point of the graph; the closer we look, the ‘straighter’ the
graph appears to be. At extreme magnification, the graph looks just like a line - its tangent
line.

Functions of two variables are really no different; as we zoom in, the graph of our function
f starts to look like a plane - the graph’s tangent plane. Finding the equation of this
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tangent plane is really a matter of determining its x- and y-slopes, which is precisely what
the partial derivatives of f do. The z-slope is the rate of change of the function in the
x-direction, i.e., the partial derivative with respect to x; and similarly for the y-slope.

So the equation for the tangent plane to the graph of z = f(z,y) at the point

(a,b, f(a,b)) is 2 :%(a, b)(z — a)—i—z—ch(a, b)(y —b) + f(a,b)

And just as with one-variable calculus, one use we put this to is to find good approximations
to f(x,y) at points near (a, b);
of of
f(mvy) ~ %(aa b)(I - a)+a_y(a7 b)(y - b) + f(a7 b)7 for (:Ea y) near (CL, b)
As with one variable, this also goes hand-in-hand with the idea of differentials:
df = fz(a,b)dx + f,(a,b)dy = differential of f at (a,b)
And as before, f(z,y) — f(a,b) = df, when dx = x — a and dy = y — b are small.

Directional derivatives and the gradient

0 0 . . o
—f and —f measure the instantaneous rate of change of f in the x- and y-directions,

ox dy

respectively. But what if we want to know the rate of change of f in the direction of the
vector 3i — 45 7 By thinking of the partial derivatives in a slightly different way, we can
get a clue to how to answer this question.
im f((a’, b) + h(170)) - f(a7 b)
—0 h
f((a7 b) + h(oa 1)) B f(aa b)

h )
we can make the two derivatives look the same; which motivates us to define the directional
derivative of f at (a,b), in the direction of the vector u, as

b) + hiu) — b

[Technically, we need 4 to be a unit vector, ||u|| = 1; for other vectors v, we would define
Dy(f) = Dy (f)]
But running to the limit definition all of the time would take up way too much of our time;

we need a better way to calculate directional derivatives! We can figure out how to do this
using differentials:

For 4 = (u1,u2), f((a,b) + hti = df = fy(a,b)hur + f,(a,b)hus, so

f((aa b) + h}?) - f(aab) ~ fx(a,b)ul + fy(a,b)u2
aind so taking the limit, we find that fz(a,b) = fz(a,b)ur + fy(a,b)us = (fz(a,b), fy(a,b))e

By writing f(a,b) = }IL

and fy(a,b) = }lblir%)

U .
The vector (fz(a,b), fy(a,b)) is going to come up often enough that we will give it its own

name;

(£2(a,b), £,(a,b)) = V(f)(a,b) = grad(f)(a,b) = the gradient of f
So the derivative f in the direction of u is the dot product of @ with the gradient of f.
This means that (when 6 is the angle between V f and @), Dz(f) = ||Delf|| - ||d|| - cos(0)
= ||V f|| cos(#) . This is the largest when cos(f) = 1, i.e., # = 0 i.e., ¢ points in the same
direction as Vf . So Vf points in the direction of largest increase for the function f, at
every point (a,b) . Its length is this maximum rate of increase.
On the other hand, when # points in the same direction as the level curve for the point
(a,b) (i.e., it is tangent to the level curve), then the rate of change of f in that direction
is0;s0 Vfeu =0,i.e, Vf L @ . This means that V f is perpendicular to the level curves
of f, at every point (a,b).



Gradients for functions of 3 variables
For functions of 3 variables, everything works pretty much the same. We can make a
similar construction of the directional derivative of w = f(x,y, z); using the differential of

/s

df = fz(a,b)dz + fy(a,b)dy + f.(a,b)dz
we can compute that Dz(f) = Vf e u, where Vf = (f,, fy, f.) is the gradient of f. For
the exact same reasons, this means that V f points in the direction of maximal increase
for f, and V f is perpendicular to the level surfaces for f.

We can use the gradient of functions of 3 variables to help us understand the graphs of
functions of two variables, since we can think of the graph of a function of two variables,
z = f(x,y), as a level curve of a function of 3 variables
g(xayaz) = f(xvy) —z=0
The gradient of g is perpendicular to its level curves, so it is perpendicular to the graph
of f, so gives us the normal vector for the tangent plane to the graph of f. Computing,
we find that
of of

V = \53 59>
g (8:16 oy
which means that the equation for the tangent plane to the graph of z = f(x,y) at the
point (a, b, f(a,b)) is
of af
b
(55(@0); By
The Chain Rule
If f is a function of the variables x and y, and both = and y depend on a single variable
t, then in a certain sense, f is a function of t; f(x,y) = f(z(t),y(t)); it is a composition.
To find its derivative with respect to t, we can turn to differentials:

d d
df = fzdx + f,dy, while dx = d—xdt and dy = d—ydt Putting these together we get

Ofdv  Of dy, . _ d df _ 0f dr  0fdy

i = Grar Dy dt dt dt Oz dt | Oy dt

This is the (or rather, one of the) Chain Rule(s) for functions of several variables. A similar
line of reasoning would lead us to:
If z = f(u,v) and u = u(z,y) and v = v(z,y), then

of

of 0fdu  Of o
9z ou 8x+ 90 97 A similar formula would hold for 9y’

In general, we can imagine a composition of functions of several variables as a picture with
each variable linked by a line going up to functions it is a variable of, and linked by a line
going down to variables it is a function of, with the original function f at the top. To
find the derivative of f with respect to a variable, one finds all paths leading down from
f to the variable, multiplying together all of the partial derivatives of one varaible w.r.t.
the variable below it, and adding these products together, one for each path. This can, as
before, be verified using differentials.

1) =17

—(a,b),—1)e(x —a,y — b,z — f(a,b)) =0

—dt , which implies that —-

Second Order Partial Derivatives
Just as in one variable calculus, a (partial) derivative is a function; so it has its own partial
derivatives These are called second partial derivatives.
of 0? 5’2 f
We write — (== f
09y = T =

Oz " Ox
g(%)_éﬂf_ 82<) 52
oy 0z’  Oydxr  Oydx

f) = (fa:)y = fzy , and similarly for 929y
mixed partial derivatives.

= fze = (f2)z , and similarly for y, and

(these are called the



2 2
This leads to the slightly confusing convention that 8_f = fyo while o/
0xdy 0yox

= fzy, but

as luck would have it:

Fact: If f,, and f,, are both continuous, then they are equal [[Mixed partials are equal.|]
So while at first glance a function of two variables would seem to have four second partials,
it ‘really’ has only three. (Similarly, a function of three variables ‘really’ has six second
partials, and not nine.)

In one-variable calculus, the second derivative measures concavity, or the rate at which the
graph of f bends. The second partials f,, and f,, measure the bending of the graph of f
in the x- and y-directions, while f,, measures the rate at which the z-slope of f changes
as you move in the y-direction, i.e., the amount that the graph is twisting as you walk in
the y direction. The statement that f,, = f,, then says that the amount of twisting in the
y-direction is always the same as the amount of twisting in the z-direction, at any point,
which is by no means obvious!

Linear and quadratic approximations
In some sense, the culmination of one-variable calculus is the observation that any func-
tion can be approximated by a polynomial; and the polynomial of degree n that ‘best’
approximates f near the point a is the one which has the same (higher) derivatives as f
at a, up to the nth derivative. This leads to the definition of the Taylor polynomial :
F(a) "
pa(z) = fla) + flla)(z —a) + - + —7—(z —a)
Functions of two variables are not much different; we just replace the word ‘derivative’
with ‘partial derivative’! So for example, the best linear approximation is
L(z,y) = f(a,b) + fz(a,b)(z —a) + fy(a,b)(y —b)
which is nothing more than our old formula for the tangent plane to the graph of f at the
point (a,b, (a,1)) -
We will soon need the second degree version: the most general degree 2 polynomial is
A+ Bx + Cy + D2? + Exy + Fy?

When we (by computing derivatives) determine the one with the same first and second
partial derivative as z = f(z,y) at (a,b), we find that it is

fua(a,b) fyy(aa b)

Qz,y) = L(z,y) + = (= )" + fay(a,0)(x — a)(y = b) + == (y = b)°

L and @ are the ‘best’ linear and quadratic approximations to f, near the point (a,b), in
a sense that can be made precise; basically, L — f shrinks to 0 like a quadratic, near (a, b),
while @ — f shrinks like a cubic (which shrinks to 0 faster, when your input is small).

Differentiability

In one-variable calculus, ‘f is differentiable’ is just another way of saying ‘the derivative
of f exists’. But with several variables, differentiablility means more than that all of the
partial derivatives exist.

A function of several variables is differentiable at a point if the tangent plane to the graph of
f at that point makes a good approximation to the function, near the point of tangency. In
the words of the previous paragraph, L — f shrinks to 0 faster than a linear function would.
In other words, the ‘best’ linear approximation, above, is also a good linear approximation.
The basic fact, that we will keep using, is that if the partial derivatives of f don’t just
erist at a point, but are also continuous near the point, then f is differentiable in this
more precise sense. (The proof of this fact is a little delicate...)

Optimization: Local and Global Extrema

Local Extrema
The partial derivatives of f measuire the rate of change of f in each of the coordinate
directions. So they are giving us partial information (no pun intended) about how thew
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function f is rising and falling. And just as in one-variable calculus, we ought to be able to
turn this into a procedure for findong out when a function is at its maximum or minimum.
The basic idea is that at a max or min for f, then, thinking of f just as a function of x,
we would still think we were at a max or min, so the derivative, as a function of x, will be
0 (if it is defined). In other words, f, = 0. similarly, we would find that f, = 0, as well.
following one-variable theory, therefore, we say that

A point (a,b) is a critical point for the function f if f,(a,b) and f,(a,b) are each either
0 or undefined. (A similar notion would hold for functions of more than two variables.)
Just as with the one-variable theory, then, if we wish to find the max or min of a function,
what we first do is find the critical points; if the function has a max or min, it will occur
at a critical point.

And just as before, we have a ‘Second Derivative Test’ for figuring out the difference
between a (local) max and a (local) min (or neither, which we will call a saddle point).
The point is that at a critical point, f looks like its quadratic approximation, which
(simplifying things somewhat) is described as Q(z,y) = Dz? + Exy + Fy? (since the first
derivatives are 0). By completing the square, we can see that the actual shape of the
graph of @ is basically described by one number, called the descriminant, which (in terms
of partial derivatives) is given by

D = fm(a7b)fyy(a7b)_(f:vy(a>b))2
(Basically, @ looks like one of 2% +y? (local min), —z? —y? (local max), or 2% —y? (saddle),
and D tells you if the signs are the same (D > 0) or opposite (D < 0) . More specifically,
if, at a critical point (a,b),
D >0 and f,,> 0 then (a,b) is a local min; if
D >0 and f,.< 0 then (a,b) is a local max; and if
D < 0, then (a,b) is a saddle point
(We get no information if D = 0.)

Global Extrema: Unconstrained Optimization

Critical points help us find local extrema. To find global extrema, we take our cue from
one-variable land, where the procedure was (1) Identify the domain, (2) find critical points
inside the domain, (3) plug critical points and endpoints into f, (4) biggest is the max,
smallest is the min.

For two variables, we do (essentially) exactly the same thing:

1) Identify the domain

2) Find critical points in the interior of the domain

(3) Identify the (potential) max and min values on the boundary of the domain (more
about this later!)

4) Plug the critical points, and your potential points on the boundary
5) biggest is max, smnallest is min

This works if the domain is closed and bounded (think, e.g., of a closed interval in the
x direction and a closed interval in the y direction, or the inside of a circle in the plane
(including the circle)). Usually, in practice, we don’t have such nice domains; but we
usually know from physical considerations that our function has a max or min (e.g., find the
maximum volume you can enclose in a box made from 300 square inches of cardboard...),
and so we still know that it has to occur at a critical point of our function.

Constrained Optimization: Lagrange Multipliers

Most optimization problems that arise naturally at not unconstrained; we are usually
trying to maximize one function while satisfying another. Even the problem above is best
phrased this way; maximize volume subject to the constraint that surface area equals 300.
We can use the one-variable calculus trick of solving the constraint for one variable, and
plugging this into the function we wish to maximize, or we can take a completely different
(and often better) approach:




The basic idea is that if we think of our constraint as describing a level curve (or surface)
of a function g, then we are trying to maximize or minimize f among all the points of the
level curve. If the level curves of f are cutting across our level curve of g, it’s easy to see
that we can increase or decrease f while still staying on the level curve of g. So at a max
or min, the level curve of f has to be tangent to our constraining level curve of g. This in
turn means:

At a max or min of f subject to the constraint g, Vf = AVyg (for some real number \)
We must also satisfy the constraint : g(z,y) = c.

So to solve a constrained optimization problem (max/min of f subject to the constraint
g(z,y) = ¢) we solve

Vf = AVyg and g(z,y) = ¢ for z,y, and A. All of the pairs (z,y) that
arise are candidates for the max/min; and the max and min must occur at some of these
points. [Technically, as before, we must also include points along g(x,y) = ¢ where Vf is
undefined; we won’t run into this possibility in practice, however.]

This also works for functions of more than two variables; the procedure is exactly the same.
In all of these cases, the real work is in solving the resulting equations! A basic technique
that often works is to solve each of the coordinate equations in V f = AVg for A ; the other
halves of the equations are then all equal to one another (since they all equal \).

This in turn allows us to finish our procedure for finding global extrema, since step (3) can
be interpreted as a constrained optimization problem (max or min on the boundary). In
these terms,

To optimize f subject to the condition g(z,y) < ¢, we

1) solve Vf =0 and g(z,y) < c,

2) solve Vf = AVg and g(z,y) = c,

3) plug all of these points into f, (4) the biggest is the max, the smallest is the min.
[This works fine, unless the region g(z,y) < ¢ runs off to infinity; but often, physical
considerations will still tell us that one of our critical points is an optimum.|




