
Math 221 - Section 5

A quick guide to sketching phase planes
Our text discusses equilibrium points and analysis of the phase plane. However, there is one

idea, not mentioned in the book, that is very useful to sketching and analyzing phase planes, namely
nullclines. Recall the basic setup for an autonomous system of two DEs:

dx

dt
= f(x, y)

dy

dt
= g(x, y)

To sketch the phase plane of such a system, at each point(x0, y0) in thexy-plane, we draw a vector
starting at(x0, y0) in the directionf(x0, y0)i + g(x0, y0)j.

Definition of nullcline. The x-nullcline is a set of points in the phase plane so that
dx

dt
= 0.

Geometrically, these are the points where the vectors are either straight up or straight down. Alge-
braically, we find thex-nullcline by solvingf(x, y) = 0.

They-nullcline is a set of points in the phase plane so that
dy

dt
= 0. Geometrically, these are the

points where the vectors are horizontal, going either to theleft or to the right. Algebraically, we
find they-nullcline by solvingg(x, y) = 0.

How to use nullclines.Consider the system

dx

dt
= 2x

(

1 −

x

2

)

− xy,

dy

dt
= 3y

(

1 −

y

3

)

− 2xy.

To find thex-nullcline, we solve2x
(

1 −

x

2

)

− xy = 0, where multiplying out and collecting the

common factor ofx givesx(2−x−y) = 0. This gives twox-nullclines, the linex+y = 2 and the
y-axis. Solutions of this system move to the right ifx(2− x− y) > 0, so the direction field arrows
will point toward the right (and either upward or downward) in two cases: When bothx > 0 and
(2 − x − y) > 0 (to the right of they axis and below the liney = −x + 2), and when bothx < 0
and(2 − x − y) < 0 (to the left of they axis and above the liney = −x + 2).
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To find they-nullcline, we solve3y
(

1 −

y

3

)

− 2xy = 0, where multiplying out and collecting the

common factor ofy givesy(3 − y − 2x) = 0. This gives twoy-nullclines, the line2x + y = 3
and thex-axis. Solutions of this system move upward ify(3 − y − 2x) > 0, so the direction field
arrows will point up (and either right or left) in two cases: When bothy > 0 and(3− y − 2x) > 0



(above thex axis and below the liney = −2x + 3), and when bothy < 0 and(3 − y − 2x) < 0
(below thex axis and above the liney = −2x + 3).
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Combining this information gives us the following picture.Notice that we can draw directions
on each nullcline by using the direction information from the other graph. For example, the line
segment from(1, 1) to (0, 3), since it is above the liney = −x + 2 and to the right of they-axis,
has solutions moving to the left.
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Also, where thex-nullcline andy-nullcline cross, both
dx

dt
and

dy

dt
are zero. So these points

(marked by dots in the above graph) are equilibrium points.
Once a solution enters the triangle with vertices(1, 1), (0, 2) and (0, 3), it can never leave.

Similarly, solutions in the triangle with vertices(1, 1), (3/2, 0) and(2, 0) can never leave.

Exercises.Graph the nullclines, sketch the direction fields, and discuss the possible fates of solu-
tions for the following systems. Note: The nullclines may not be straight lines.

(1)
dx

dt
= x(−x − 3y + 150),

dy

dt
= y(−2x − y + 100).

(2)
dx

dt
= x(10 − x − y),

dy

dt
= y(30− 2x − y).

(3)
dx

dt
= 2x

(

1 −

x

2

)

− xy,
dy

dt
= y

(

9

4
− y2

)

− x2y.

(4)
dx

dt
= x(−4x − y + 160),

dy

dt
= y(−x2

− y2 + 2500).
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Math 221 - Section 5

A quick guide to homogeneous linear systems of DEs

A standard form homogeneous linear system of two first order constant coefficient differential

equations is

dx

dt
= ax + by

dy

dt
= cx + dy

where a, b, c, and d are constants. Both x and y are dependent variables, depending on the

independent variable t. The solution to this system is a pair of functions x(t) and y(t) that satisfy

both DEs together. Often, it will be convenient to write the solution as a column vector

~s(t) =

[

x(t)

y(t)

]

.

To solve this system when b 6= 0, we use the first DE to eliminate the variable y from the second

DE. Solving the first DE for y:

y =
1

b
(x

′
− ax) .

Then the derivative

y
′
=

1

b
x
′′
−

a

b
x
′
.

Plugging these into the second DE of the system gives

1

b
x
′′
−

a

b
x
′
= cx + d(

1

b
(x

′
− ax)) .

Rearranging the terms of this equation and multiplying both sides by b, we now have one second

order linear constant coefficient DE to solve for x, namely

x
′′
− (a + d)x

′
+ (ad − bc)x = 0 .

So we solve this DE in the usual way (chap. 3 sec. 3 of the text). Once we have x, we can use the

formula in the first box to find y.

Using the vocabulary discussed in chapter 5 of the text, the characteristic roots r1, r2 from the

auxiliary equation for the constant coefficient second order homogeneous DE above for x are also

the eigenvalues of the matrix
[

a b

c d

]

.

An eigenvector associated to the root ri is the vector

[

1
ri−a

b

]

. These vectors are discussed further

in examples below.

Homogeneous linear systems always have a critical point at (0, 0); that is, the constant functions

x(t) ≡ 0 and y(t) ≡ 0 are solutions of this system for any values of a, b, c, and d. The behavior

around the critical point (0,0) depends on the characteristic roots of the auxiliary equation. For

example, the critical point can be stable, unstable (a source), or asymptotically stable (a sink).

The critical point is described in various ways as a node, saddle, spiral, center, or star. See the

pictures on the last page of this handout for pictorial definitions of these terms.

Example (A): Find the general solution to the linear system

dx

dt
= 0x − 2y ,

dy

dt
= x + 3y ,

and analyze the phase plane direction field for this system.

Answer: Here we have b = −2 6= 0 in the first DE, we can solve for y and get y = −

1

2
x
′
. Plugging

this into the second DE, then −

1

2
x
′′

= x + 3(−
1

2
x
′
). Then the associated second order equation
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(also from the boxed formula on p. 1) is x
′′
− 3x

′
+ 2x = 0. This has roots 1, 2, so the solution for

x is

x(t) = C1e
t
+ C2e

2t
.

Using the formula (above or from the boxes) for y(t), we get y = −

1

2
x
′
= −

1

2
C1e

t
− C2e

2t
.

The general solution for the system is

x(t) = C1e
t
+ C2e

2t
y(t) = −

1

2
C1e

t
− C2e

2t
.

Written as a vector, the general solution is ~s(t) =

[

x(t)

y(t)

]

= C1e
t

[

1

−

1

2

]

+ C2e
2t

[

1

−1

]

.

(Note : It is important to notice that the same constants appear in the solutions for both x(t) and

y(t), so we cannot replace a multiple of an arbitrary constant with an arbitrary constant in only

one of the solutions.)

The x-nullcline is the line y = 0; arrows point to the right when y < 0 and to the left when

y > 0. The y-nullcline is the line y = −

1

3
x; arrows point upward when y > −

1

3
x and downward

when y < −

1

3
x.

The solution with C1 = 1 and C2 = 0 is given by x(t) = e
t
, y(t) = −

1

2
e
t
; then for all t, this

solution follows the ray y = −

1

2
x for x > 0 and y < 0 in the phase plane, going up and to the right

in the direction of the eigenvector

[

1

−

1

2

]

for the eigenvalue/root r1 = 1 as t increases. The solution

with C1 = 0 and C2 = 1 has x(t) = e
2t

, y(t) = −e
2t

, and so follows the ray y = −x with x > 0 and

y < 0 in the direction of the eigenvector

[

1

−1

]

for the eigenvalue/root r2 = 2 as t → ∞.

For the solution of the IVP with x(0) = 12 and y(0) = −5, as t → ∞ we have x(t) → −∞ and

y(t) → ∞. However, for this IVP the solution (x(t), y(t)) can never reach the point (−7, 6).

The critical point (0, 0) is unstable; the characteristic roots 1,2 for x distinct positive real num-

bers, and so the critical point is a node source.

Example (B): Find the general solution of the system

dx

dt
= x + 2y ,

dy

dt
= −5x − y ,

and analyze stability of the critical point (0,0).
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Answer: We have b = 2 6= 0 in the first DE, we can solve for y and get y =
1

2
x
′
−

1

2
x. Plugging

this into the second DE, then
1

2
x
′′
−

1

2
x
′
= −5x − (

1

2
x
′
−

1

2
x). Then the associated second order

equation is x
′′

+ 9x = 0. This has roots ±3i, so the solution for x is

x(t) = C1 sin(3t) + C2 cos(3t).

Using the formula for y(t), we get

y(t) = (1/2)(3C1 cos(3t) − 3C2 sin(3t)) − (1/2)(C1 sin(3t) + C2 cos(3t))

= C1 ((3/2) cos(3t) − (1/2) sin(3t)) + C2 (−(1/2) cos(3t) − (3/2) sin(3t)) .

Written as a vector, the general solution is

~s(t) =

[

x(t)

y(t)

]

= C1

[

sin(3t)

(3/2) cos(3t) − (1/2) sin(3t)

]

+ C2

[

cos(3t)

−(1/2) cos(3t) − (3/2) sin(3t)

]

.

This general solution involves only cosine and sine functions, but not exponential functions, so

x(t) and y(t) can’t (asymptotically) approach 0, and they also can’t go to ±∞. The critical point

(0,0) for this linear system is a stable center.

Example (C): Two large tanks are interconnected by pipes. Fresh water flows into tank A at a

rate of 6 L/min. Solution flows through a pipe from tank A to tank B at a rate of 8 L/min, and

solution flows through another pipe from tank B to tank A at a rate of 2 L/min. The solution in

tank B also drains out onto the ground at a rate of 6 L/min. The solutions in both tanks are kept

evenly mixed. Initially tank A contains 3 g of salt dissolved in 24 L of water, and tank B contains

5 g of salt dissolved in 24 L of water. Set up an initial value problem modeling this situation.

Answer: Let t be the time in minutes, with initial time t = 0. Let x(t) be the mass of salt in

grams in tank A at time t, and let y(t) be the mass of salt in grams in tank B at time t. The initial

conditions say that x(0) = 3 and y(0) = 5.

The volume of solution in tank A is changing at a rate of 6− 8 + 2 = 0 L/min, so the volume in

that tank is a constant 24 L. The volume in tank B changes at a rate of 8 − 2 − 6 = 0 L/min, so

the volume in that tank is also a constant 24 L/min.

First analyze the input and output of salt at tank A. The fresh water flowing into tank A contains

0 g/L of water, so the input from this pipe changes the mass of salt in tank A at a rate of (0 g/L)(6

L/min)=0 g/min. The solution flowing from tank A to tank B removes salt from tank A at a rate

of (
x(t)
24

g/L)(8 L/min). The solution flowing from tank B to tank A inputs salt into tank A at a

rate of (
y(t)
24

g/L)(2 L/min). Since
dx
dt = (input rate) - (output rate), then

dx
dt = 0 +

2y
24

−

8x
24

g/min.

Next do the same for tank B:
dy
dt = (input rate) - (output rate) =

8x
24

−

2y
24

−

6y
24

g/min.

The initial value problem modeling this situation is:

dx

dt
= −

1

3
x +

1

12
y ,

dy

dt
=

1

3
x −

1

3
y ; x(0) = 3 , y(0) = 5 .

Example (D): Solve the initial value problem from Example (C), and discuss what happens to

the solution as t → ∞.

Answer. Here we have a = −

1

3
, b =

1

12
, c =

1

3
, and d = −

1

3
, with b 6= 0. The associated second

order DE is x
′′
− (−

1

3
−

1

3
)x

′
+ ((−

1

3
)(−

1

3
) − (

1

12
)(

1

3
))x = 0, or x

′′
+

2

3
x
′
+

1

12
x = 0. This DE has

auxiliary equation r
2
+

2

3
r +

1

12
= 0, with roots r1 = −

1

6
and r2 = −

1

2
. Then the solution for x is

x(t) = C1e
−(1/6)t

+ C2e
−(1/2)t

.

Then

y = (1/
1

12
)(x

′
− (−

1

3
)x) = 12x

′
+ 4x

= 12(−
1

6
C1e

−(1/6)t
−

1

2
C2e

−(1/2)t
) + 4(C1e

−(1/6)t
+ C2e

−(1/2)t
)

= 2C1e
−(1/6)t

− 2C2e
−(1/2)t

3



Plugging the initial values into this general solution gives

x(0) = C1 + C2 = 3 y(0) = 2C1 − 2C2 = 5.

These equations have solution C1 =
11

4
and C2 =

1

4
. Then the solution of the initial value problem

is

x(t) =
11

4
e
−(1/6)t

+
1

4
e
−(1/2)t

, y(t) =
11

2
e
−(1/6)t

−

1

2
e
−(1/2)t

.

As t → ∞, the functions x(t) and y(t) in these solutions (asymptotically) approach 0. (The

critical point (0,0) for this linear system is a node sink.)

Exercises:
(1) Find the general solution to the linear system if b is zero. Hint: The first DE has no y’s, so

solve it first and plug that solution into the second DE.

For exercises (2)-(6), find the general solution (or IVP solution when initial values are given),

draw the phase plane direction field, and discuss the stability of the critical point (0,0):

(2)=(4.1.15)
dx

dt
=

1

2
y ,

dy

dt
= −8x .

(3)=(4.2.3)
dx

dt
= −3x + 2y ,

dy

dt
= −3x + 4y ; x(0) = 0 , y(0) = 2 .

(4)=(4.2.6)
dx

dt
= x + 9y ,

dy

dt
= −2x − 5y ; x(0) = 3 , y(0) = 2 .

(5)=(6.1.18)
dx

dt
= −y ,

dy

dt
= 4x .

(6)=(6.1.20)
dx

dt
= y ,

dy

dt
= −5x − 4y .

Exercises (7)-(8) deal with a two-tank system. Fresh water flows into tank A, and brine flows

from tank B onto the ground, both at a rate of 2r L/min. Brine flows from tank B to tank A at a

rate of r L/min, and brine flows from tank A to tank B at a rate of 3r L/min. The initial amounts

x(0) and y(0) of salt in tanks A and B, respectively, are given, as are the volumes VA and VB in

the tanks. Set up and solve the initial value problem modeling the situation in each exercise.

(7)=(4.2.30) r = 10 L/min x(0) = 0.5 g, y(0) = 0.5 g, VA = 100 L, VB = 200 L.

(8) r = 3 L/min x(0) = 1 g, y(0) = 2 g, VA = 20 L, VB = 20 L.
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Math 221 - Section 5

A quick guide to homogeneous linear systems of DEs and the phase plane

A standard form homogeneous linear system of two first order differential equations is

dx

dt
= ax + by

dy

dt
= cx + dy

where a, b, c, and d are constants.
Homogeneous systems always have a critical point at (0, 0); that is, the constant functions

x(t) ≡ 0 and y(t) ≡ 0 are solutions of this system for any values of a, b, c, and d.
To solve the system when b 6= 0, we solve the first DE for y and using this to eliminate

the variable y from the second DE:

y =
1

b
(x′

− ax) x′′
− (a + d)x′ + (ad − bc)x = 0 .

The behavior around the critical point (0,0) depends on the characteristic roots of the aux-
iliary equation. For example, the critical point can be stable, unstable (a source), or asymp-
totically stable (a sink). The critical point is described in various ways as a node, saddle,
spiral, center, or star. See the pictures on the last page of this handout for pictorial definitions
of these terms. Exercise (1): In Example (A) of the Solving linear systems handout we

found that the general solution to the linear system in dx
dt

= x+3y , dy
dt

= 0x+2y
is

x(t) = 3C1e
2t + C2e

t y(t) = C1e
2t .

Graph the two solutions where C1 = 0 and C2 = 1 and where C1 = −1 and C2 = 0 in
the phase plane. What does this tell you about (0, 0)? Example (B): In Example (B) of

the Solving linear systems handout we found that the general solution to the linear system
dx
dt

= x + 2y , dy
dt

= −5x − y
is

x(t) = C1 sin(3t)+C2 cos(3t) , y(t) = C1

(

3

2
cos(3t) − 1

2
sin(3t)

)

+C2

(

−

1

2
cos(3t) − 3

2
sin(3t)

)

.
This general solution involves only cosine and sine functions, but not exponential functions,

so x(t) and y(t) can’t (asymptotically) approach 0, and they also can’t go to ±∞. The critical
point (0,0) for this linear system is a stable center. Example (C-D): In Examples (C-D) of

the Solving linear systems handout we found that the general solution to the linear system
dx
dt

= −

1

3
x + 1

12
y , dy

dt
= 1

3
x −

1

3
y

is
x(t) = C1e

−1/6)t + C2e
−(1/2)t y(t) = 2C1e

−(1/6)t
− 2C2e

−(1/2)t .
As t → ∞, the functions x(t) and y(t) in these solutions (asymptotically) approach 0.

The critical point (0,0) for this linear system is a node sink. Exercises: For the following

systems, find the general solution and discuss the stability of the critical point (0, 0): (2)
dx

dt
= 4x ,

dy

dt
= x + 4y . (3)

dx

dt
= 4x − 5y ,

dy

dt
= 2x + 6y .
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