
Math 203

Topics for second exam

Statistics: the science of data

Chapter 5: Producing data
Statistics is all about drawing conclusions about the opinions/behavior/structure of large populations
based on information about a relatively small part of that population, called a sample.

Samples can be gathered in a variety of ways:
Convenience sample: interview people as they walk by
Voluntary response sample (=call-in poll): the subject contacts the interviewer
Random sample: subjects are chosen `randomly' from the target population

A sampling method is biased if it systematically favors one outcome over another (i.e., there are
systematic reasons why the poll will not re
ect the true behavior of the population).

E.g., comvenience poll: ask people at a mall `Do you like malls?'
Random sample: every sample of the same size is as likely to be chosen as any other. Basic technique:
assign every subject in the population a di�erent number with the same number of digits, and then
choose your sample by picking strings of numbers from a table of random digits.

Sampling variability: we would never expect two random samples to give the exact same result!
There is always some variablility in results. However, this variability behaves in a very predictable
way.

The individual sample results will be spread out around the `true' value describing the opinions/structure
of the whole population. But if our sample size is large, the values from our random samples will
be more bunched together. This is described in terms of a `margin of error' (MOE): 95% of our
random samples will fall within the MOE of the true value, where the MOE is

5% for sample size 600, 4% for 1000, and 3% for 1500
Experiments: Unlike opinion polls, an experiment seeks to determine how one quantity will change
when another is varied, e.g., how recovery time changes with the change in dosage for some new
drug; does paying people more for the same job make them work harder, etc.

The basic problem in experimental design is making sure that only the thing we think we are varying
(the causal variable), to see the change in the other quantity (the response variable), is actually
changing!

Confounding: changes in two variables (usually, the one we're tracking and one we're not!) have
similar e�ects on the response variable.

E.g., the placebo e�ect: giving patients something (even if it is `nothing') will have some e�ect.
Interviewer e�ects: might send subtle signals which will e�ect the subjects responses.

Solution: use a control group, to which you give a `sham' treatment to. Both control group and
experimental group are chosen randomly, to average out individual di�erences (randomized com-
parative experiment). For interviewer e�ects, use a double-blind experiment; neither interviewer
nor subject know who is in control group.

When is a change in response variable really being caused by the change in causal variable? A change
is statistically signi�cant if it is unlikely to be the result of random chance. The idea is, even small
changes can be signi�cant if they occur to a large enough population.

Chapter 6: Describing data
Once you have generated your data, it's time to understand it! The idea is to look for patterns in
the data, which tells you something about your population.

Typically, we try to disply the data graphically; the eye is very good at picking out patterns.
Dotplot: put one dot over the number `N' for every sample that had value N. E.g., 
ip a coin 50
times, many times, record the number of heads. Typically, our dots will sort of clup together, with
some outliers lying far away from the majority.

If our numbers can take on too many distinct values (e.g., 100 di�ferent possible exam grades in a
class of only 30), we might plot ranges of values (91-100, 81-90, etc.) recording the number of
samples in each range as a rectangle with width = the range of values and height the number of
samples. This is a histogram of the data.

With both we can try to describe the `shape' of the data: any symmetry or lack of it (e.g., skewed
(= stretched out) to the right or left; data has a `tail'), where the center is, how spread out the
data is. For this, there are two sets of numbers we can use:



Median/Quartiles: list the numbers in increasing order. The median M is the middle number on
this list. The �st quartile Q1 is the median of the bottom half (i.e., one-fourth of the way along
the list), and the third quartile Q3 is the median of the top half. The median describes the center;
the quartiles describe the spread.

Mean/standard deviation: the mean � is the `average'; add all of the numbers up, and divide by how
many numbers you have. This gives a (usually di�erent) description of the center of the data.

The standard deviation � describes the spread; it is the square root of the variance �2, which is
calculated as (here x1; : : : ; xn are our data points)
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The larger � is, the more spread out our data is.
The distinction between these two way of measuring center and spread is basically that � and � are
much more sensitive to outliers, whileM and the quartiles are almost completely ignorant of them.

In the case of M and the quartiles, we can add the highest and lowest values to create a boxplot; draw
a horizontal line at M , a rectangle on top whose top and bottom are the quartiles, and �nally a
vertical line on top of this whose top and bottom are the highest and lowest values in the data set.
This gives a very quick representation of the center, spread, and outliers in the data, especially for
making comparisions between di�erent data sets.

With data from experiments, on the other hand, our data comes in pairs; e.g., pairs of dosages and
recovery times. To visualize this sort of data, we can use a scatterplot. Plot each pair as a point
on a rectangular grid (with scale for the �rst number (causal variable)along the bottom, and for
the second (response variable) along the left side), where the point lies above the �rst number and
to the right of the second number.

With this we can look for patterns; form (clumped together or spread out?), direction (is there a
trend in the data, does it follow a line/curve?), and strength (how cloe do all the data points stay
to that line/curve?)

Can we predict values of the response variable for values of the causal variable that we didn't check?
Use a regression line:

Can �t a line to the data `by eye'; slope of the line ( the `a' of y=ax+b) tells us how the data trends.
Correlation describes how well the line �ts the data (the `strength', above).

The least squares regression line goes through the point decribing the mean of both variables, and
has slope equal to (where (x1; y1); : : : ; (xn; yn) are our data points, and � means add up all of the
quantities from 1 to n)

b =
n�(xiyi)� (�xi)(�yi)

n�(x2i )� (�xi)2

Chapter 7: Probability: the mathematics of chance
Probability is the study of the long-term behavior of random phenomena, where random, basically,
means that knowledge of what the phenomenon has done before will not let you decide what it will
do next. Such phenomena include 
ipping coins, rolling dice, the Dow Jones Industrial Average,
etc. The basic idea is that while the object's short term behavior is impossible to predict, its long
term (average) behavior can be predicted with great accuracy!

Each observation of the object is a trail (e.g., the 
ip of a coin; and each possible outcome of the
trial is an event. The probability of each event predicts how many times the event will occur, in a
large number of trials.

We can express these things in a probability model. It consists of two things:

1. A sample space S = the collection of all possible outcomes for our trial
2. A probability ( = a number between 0 and 1) for each outcome.
The idea is that the probability describes the fraction of times we would expect our outcome to occur
in a very large number of trials.

The individual probablilities must add up to one, because: If we let an event mean, more generally,
some collection of outcomes, then the probability of the event should be the sum of the individual
probabilities of each event. Consequently, the sum od all the probabilities should be the probability
that some one of the outcomes occurs in each trial, i.e., the fraction of the time that something
happens! Since something always happens, this probability is one.



Ex: 
ipping a (fair!) coin; the sample space is fheads,tailsg, and each has a probability of .5 .
Ex: rolling a pair of dice: there are 36 possible outcomes (if we keep track of which die is which),
each having a probability of 1/36 .

These probability models describe equally likely outcomes; each event has the same probability.

Ex: the list of birthdays in a classroom of 20 students; there are 36620 possible outcomes; is each
equally likely?

Ex: Roll a pair of dice, but don't keep track of which is which; there are then only 21 possible
outcomes, and they are not equally likely!

Just as with dotplots, is probability model has a mean and a standard deviation (and they mean
much the same thing!):

For a probability model with sample space S = fx1; : : : ; xkg, where each outcome xi occurs with
probability pi, then:

The mean � of the model is the sum of the numbers pixi (think: for a large number N of trials, each
xi will occur approximately Npi times; average these numbers!)

The standard deviation � of the model is the square root of the sum of the numbers pi(� � xi)
2

(again, this is what we would expect from just thinking of a large number of trials).

The signi�cance of these numbers stem from two important results:

The Law of Large Numbers: If we observe a random phenomenon that obeys a certain probability
model (e.g., 
ip coins or roll dice) for larger and larger numbers of trials, then:

1. The fraction of times a particular outcome occurs will get closer and closer to the probability of
that outcome, and

2. The average of all of the outcomes wil get closer and closer to the mean � .

The Central Limit Theorem: under the same conditions, if we repeatedly average the oucomes
of n trials, and plot the resulting averages, then these averages will have distribution that is
(aprroximately) bell curve shaped (see below!); and the bell curve will have mean � and standard
deviation �=

p
n.

The idea behind the Central Limit Theorem is that taking a survey of a population has alot in
common with gambling; there is an underlying pattern ( the fraction of the population that feels a
certain way), but the individual answers we get will vary in a random way. If we plot the fraction
from a large collection of samples of the same size, they will typically form a bell curve or normal
ditribution. And the basic idea is that everything about a bell curve is determined by two numbers:
its center (= mean = �) and its spread (= standard deviation = �). The standard deviation can
be seen as the distance from the center to the point on the curve where the curve starts to `level
out'.

µ

σ
σ

Every normal distribution has the same properties:
The median is � ( = the mean); the �rst and third quartiles are Q1 = �� 2�=3 and Q3 = �+ 2�=3
(so half of the data from your trials will lie between these two numbers).

The 68-95-99.7 Rule:
68% of the data points will lie between �� � and �+ � .



95% of the data points will lie between �� 2� and �+ 2� .
99.7% of the data points will lie between �� 3� and �+ 3� .

The signi�cance of the Central Limit Theorem is that the spread of the distribution for a larger
number trials is always smaller (there is that

p
n in the denomenator of the standard deviation...).

So these rules say that the fractions we get from large trials mostly fall very close to the mean.
This is why casinos make money. The mean of the probability model for all of their games is slightly
negative (they get your money). If you play only a few times, the spread of possible outcomes
for you is very large. This is what makes gambling exciting. But for the house, their spread is
very small, since they average wins and losses over a very large number of plays. In fact, they are
virtually guaranteed to make money every day, and that amount is nearly always very close to the
mean (times the number of players!).

Chapter 8: Statistical inference
Here we return to something we introduced back in Chapter 5; the idea of the margin of error in a
poll. The basic idea is that this is the same as the `95' in the 68-95-99.7 rule.

The results of opinion poll are usually given as a percent; `35% of those polled said.....' . Here we
mostly think of this as a fraction; 35% means 35 out of 100, or .35 .

In general, we call such a statement a sample proportion. The idea is that it is supposed to represent
a number close to the proportion of the entire population who would say whatever it is they would
say. In general, any number obtained from a sample is called a statistic; the number for the whole
population that it is intended to estimate is called a parameter. In the case of proportions, the
smaple proportion is usually denoted p̂, and the corresponding parameter is called p.

We know that di�erent samples will yield di�erent proportions; there is sampling variability. But
the Central Limit Theorem (CLT) tells us what this distribution looks like! We can think of pick
someone from the population as a random phenomenon, where they have a probability of p of
saying whatever it is we reported (call this event `1'), and a probability of 1 � p of not saying it
(call this event `0'). We can then calculate that the mean � of this model is p, and its standard

deviation � is (unfortunately)
p
p(1� p). *So*, if we carry out a number of trials (= ask n people),

and look at the average of the n trials (= the sample proportion p̂, and do this many times, the

CLT says these will form a bell curve with mean � and standard deviation �p̂ =
p
p(1� p)=

p
n.

We can then use the 68-95-99.7 rule to tell us how often we expect the sample proportion p̂ to fall
within certain multiples of �. In part, 95% of the time, p̂ will be within 2

p
p(1� p)=

p
n of p.

But this, in turn, says that 95% of the time, p will be within 2�p̂ = 2
p
p(1� p)=

p
n of p̂ ! Which

is what we really want to know; it tells us how often our stastistic is close to the parameter we're
trying to measure (and how close it would be). Unfortunately, in order to know what 2�p̂ is, we
really need to know p (which we don't). But really, all we really want to know is that 2�p̂ is small,
and what we can show is that no matter what p is, 2�p̂ is smaller than 1=

p
n . Which tells us that

if n is large (i.e., our sample is large), then most of the time our sample proportion p̂ is close to
the true proportion p.

We can say much the same thing for sample means: if a quantity varies, but its distribution is bell
curve sahaped with mean � and standard deviation �, then if we take smaples of size n and average
them, the distribution of these averages will also be a bell curve, with the same mean but smaller
standard deviation; it will be �=

p
n . So again we can use the 68-95-99.7 rule to describe how

often the sample mean will be within certain values on either side of the mean.

One situation where these idea are put to use in practice is in statistical process control. Here the
idea is to try to understand, by sampling the product coming o� a production line or out of a
machine, whether or not the machine is working properly. We basically think of some property of
the objects coming o� the line (their weight?) as being normally distributed, with known values
for the mean � and standard deviation �. Any one item falling far from the mean might be due
to simple chance; do we want to stop the process and inspect the machine because of it?

The idea is instead to use a measurement that we know should exhibit much less variation, namely
the average value of some number n of the objects. What we do is build a control chart; each hour
we randomly pick n (9, say) objects and measure them, and graph their average against the hour
of the measurement.



µ

µ+2σ

µ−2σ

n

n

If we draw in the lines at the mean and two standard deviations above and below, then we know
that our average values should be more or less evenly distributed on either side of this line, and
95% of them should fall between the upper and lower lines. But since we have taken an average
those upper and lower lines are much (in our case n=9, three times) closer to the mean than they
would be with one sample. So even small changes in the average value can be signi�cant.

In practice a halt is called and the maichine is inspected if one of our averages falls more than two
(or if you want to be more sure the machine needs �xing, three) standard deviations away from
the mean, or if eight averages in a row fall on the same side of the mean. Either of these indicates
that it is very likely that the average object that the machine is really putting is di�erent than the
average value we designed the machine for. out is

One �nal observation; it is possible for completely correct statistics to lead us to make the wrong
conclusion. For example, in a small town it is discovered that in a recent month the banks have
approved 40% (18 of 45) of the loan request made by men, and 50% (9 0f 18) made by women. Does
this represent discrimination by the banks? This information can be represented by a two-way
table:

applied approved

Men

Women

applied approved

Men

Women

applied approved

Men

Women

45 18

18 9

5 3

10 6

40 15

8 3

In point of fact, however, there are two banks in town. Each actually grants the same fraction of
loans to men and women. But since far more men applied at the bank that had the lower approval
rate, when we add the results from the two banks together, we see an apparent di�erence between
the two. This demonstrates that confounding variables (the di�erence in sizes of the two banks,
in this example) can be very subtle, indeed!


