Math 203
Eulerization — Why and How

An Euler circuit, when it exists, describes the tredBcient solution to any problem where tasksénay

be done along the edges of a graph. Examplescbftasks abound if you try to think of them, for
example mail or newspaper delivery, garbage catlecparking meter monitoring, street sweepingneve
walking though a store’s aisles looking for unadiged specials (or through a gift shop looking for
inspiration right before your significant other'stbday)! But many of the graphs involved don'wkaan
Euler path, or even if it does we may have to statthe wrong vertex (if you’re a mail carrier, yioave to
start at the post office, even if that isn’t an egdtex - you may have to end there too). Howeénge
streets in your neighborhood don’t have an Euleudi, is it okay with you if your garbage doesgét
collected? | (and your neighbors) hope not.

When the graph of edges we need to cover to perforimportant task doesn’t have the Euler
path/circuit that meets our needs, what we muss$ dgually to cover paths not needed for the taskaa
to cover parts of our path twice. In the graphf torresponds to adding edges to represent ttris ex
travel — the process of adding edges to get taphgwith an Euler path/circuit is called eulerizirgny
edge we have to cover a second time becomes arttetggets duplicated in the graph — covering the
edge and its duplicate really means traveling ¢dge twice. Any new path we take that wasn't & th
graph becomes a new edge between the appropriéiteeseon the old graph. (For example, in the
newspaper delivery application there might be alblehere nobody subscribes, so that isn’t on oitialn
diagram, but that block can be added to the griaplhelps form an efficient route.) However, mosét
the time the edges already in the graph represgrdpiions — adding a new edge between two vertices
that don't already have an edge between them yswgdtesents something like bulldozing everything
between two intersections and building a new direatl connecting them. Normally, that’s not fekesib
So to simplify the setting in dealing with theselgems, we’ll limit ourselves to looking at changeshe
graph that duplicate existing edges. We’'ll alssuase for simplicity that all edges are equally lyoist
travel a second time (costly may be in terms o&timoney, or effort), implying that the most eftict
eulerization is the one that minimizes the numbbe&dges we duplicate. (It's not that hard to twéak
process a little to fix things if either of thessamptions is false in a particular application.)

We'll focus first on problems where we’d like toveaan Euler circuit, i.e., we want to cover eveatge

and end up at the vertex where we start. That smv@ameed to add edges until every vertex is of eve
degree. What happens when we duplicate an edgdf? vBrtices at the ends of the edge change iredegr
parity (i.e. from odd to even or even to odd)wé have an odd degree vertex, and we duplicatelga e

to make that vertex even, if the other end of thgeenvas an odd vertex also, great, we've made both

even. But if it was even, we've now made it oduj aeed to duplicate another edge starting atothiat
to fix it. The process will continue until the edge duplicate has an odd vertex at both ends.thgee
diagram below, where the dotted edge was just atidixl vertex A at right middle, but messes up th
vertex at upper right. We must now add anotheeetigrting at there. That means we’re buildingth p
C B This vertexnowodd (bad) — starting at vertex A, and the path can end only
® @ L 9 . :
when it gets to another odd vertex. What this
says is that eulerizing requires pairing up the
.D PA PN A.Th.s /Venex . odd-verti.ces, and cpnnecting th.e two odd
even (good) vertices in each pair by duplicating a path
between them. Clearly each such path needs
o———© o———© to be done in a way that is as efficient as
possible, but also the pairing of odd vertices nmestione intelligently, to keep the average distanc
between vertices in the same pair as small aslgesdn the above diagram, the odd vertices oaigyn
are A, B, C, and D. We can pair A with B and Chnilt, for an average pair distance of 2, or we Gin p
A with D and B with C, and the average pair distigcstill 2! But it would be silly to pair A witle and
B with D, for an average pair distance of 3. Omesign even before we find the average thatasie |
pairing is a loser is that the edge from B to Clddoe duplicated twice by that pairing, once dugtiiag
an optimal path from A to C and again duplicatimgoptimal path from B to D. If you ever find one
edge duplicated twice in an eulerization, the ézdeion is inefficient, because if both duplicates
eliminated, the vertices all remain of even deguee thus the graph is still eulerized without them.

METHOD FOR EULERIZING A GRAPH
To eulerize a connected graph into a graph thaahasgrtices of even degree:
1) Identify all of the vertices whose degree is o@decall that there must be an even
number of such vertices.
2) Pair up the odd vertices, keeping the averadgleeoflistances (number of edges) between
the vertices of the pairs as small as possible.
3) For each pair, duplicate all of the edges alanggtimal path between those two
vertices.

Note that if you are dealing with a graph whiclaisomplete rectangular array of edges with at ast
edges on each side, there is a particularly sinvpleto find a best-possible eulerization calledetge-
walker algorithm, described in problem #50 on pe&fe3-360 of the text.

Once you've eulerized the graph, you can find aleieircuit on the Eulerized graph and reinterpinet
as a path on the original graph that efficientlyetsgour needs. Recall that if you've chosen tianm
correctly, no edge of the original graph will begptlcated more than once in the eulerized graplanso
edge in the original graph will be traveled on aistrone extra time.

Example: Suppose we want a reasonable eulerization dbtloaving graph:

® & 2
@

First we must identify the odd vertices. Theyteeight vertices labeled A through H in the copthe
graph below:

o]

G H

Note that we’ll need 4 pairs, and that every oddexeexcept C and B is adjacent to at least onerattid
vertex (i.e., connected to it by a single edge)anl D are adjacent, as are F and H and G and factl,

E and H are also adjacent to each other, and #ulsis adjacent to two odd vertices. With fourgai
knowing each pair will require at least one edgbdauplicated, we’d like to keep the number ofesdg
we duplicate as close to 4 as possible. You nitghk we should pair A with D, E with G, and F with
to use as many of those adjacent odd verticesssshpe, but if we did that, we’'d have to pair BmC,
and they're somewhat far apart — it requires atlBaedges to get between them, meaning we'd reed t
duplicate 8 edges in all. We can try to do bdttan that, by checking whether we can pair up B@nd
with other closer odd vertices without messingamprany other odd vertices. The closest odd \extic
to B are A, D, and F, which are each two edgeswdisand the closest odd vertices to C are E and G,
which are also 2 edges distant. If we pair up Bhwither A or D, we will then leave the other vath a
nearby odd vertex and have more edges to addobsbrif we pair up B with F. Likewise, if we paip
C with E, we are leaving G without an adjacent vedex to pair with, but if we pair C with G, werca
still pair E with H. Thus our best pairing is AtiiD, B with F, C with G, and E with H. Our distas
between the vertices in our pairs are 1, 2, 2,laridr a total of 6 edges to duplicate. In sonmsesathere
can be a tie for the pairing that produces the pessible eulerization, but in this case we hauadothe
only pairing requiring just 6 duplicated edges.e@ulerized graph for this pairing looks like:

Og

Note that with a complex diagram with many odd izes, it may not always be obvious what the best
pairing is, but it will often be obvious that centigairings are not good. If the diagram is compiee
may ask you to find a decent pairing, but we wenjpect you to prove you've found the best possible
pairing.

One final comment: What changes are necessary lifave a connected graph where we need to travel all
of the edges but we don’t want a circuit, just thpal.e., what if we don’t need or want to endaiyere

we start? Let's be specific, suppose we wishdd sit vertex A and end at a different vertex Bjecing
every edge at least once. The easy way to fireffamient route is to start by introducing an acidl edge

E between A and B that is special in that edgertbabitself be duplicated. Now eulerize the gragtn

edge E added, remembering E cannot be duplictlbd.result has every vertex of even degree. Now
remove edge E anabila!, we have a connected graph where A and B arertlyewo odd degree

vertices. That means there is now an Euler patiggoom A to B on the graph, which interprets as a
efficient path to cover every edge at least onctheroriginal graph.

Problems:

1. Find good eulerizations of each of the follogvgraphs, so that you could efficiently cover eadbe
and end up where you start.

(b)

[. J
[2 @ L 4 L J
(c) (d)
@ L L L]
(e)

2. In1 parts b, c, and e, find an Euler circuitlo& modified graph you created.

3. Find a graph that would be useful for creatingefficient path that starts at vertex A and eatdsertex
B for each of the following graphs. Then find anldf path starting at A on the modified graph.

A
. P P PS ® ® ®
® PR ® ® PR PR ®
® PR ® ® PR PR ®
A B ® ® ® ® PR PR ®
® ® ® ® PR P ®
B

(@)

4. Using the eulerized graphs:

a) In problem 1(e), indicate an efficient path oa thiginal graph that starts and ends in the upper
left corner and covers each edge at least onceyimpering the edges in the order in which they
are used.

b) In problem 3(a), indicate an efficient path ba original graph that starts at vertex A and eatds
vertex B and covers each edge at least once, bpenimg the edges in the order in which they
are used.

