
Improper integrals: dominant terms decide

When we are dealing with an improper integral of the form

∫

∞

a

f(x)

g(x)
dx, our perspec-

tive is tht the ‘dominant’ terms in the numerator and denominator determine whether or
not the integral converges. By ‘dominant’ we mean that if f(x) = a1(x)+a2(x)+· · ·+an(x),

then the term a1(x) dominates if
ai(x)

a1(x)
→ 0 as x → ∞, for every other term i = 2, . . . , n.

Then if a1(x) and b1(x) are the dominant terms of the top and bottom, our result is that
∫

∞

a

f(x)

g(x)
dx converges precisely when

∫

∞

a

a1(x)

b1(x)
dx converges.

One way to justify this in any particular instance is to note that since
ai(x)

a1(x)
→ 0 and

bi(x)

b1(x)
→ 0 for every i ≥ 2, when we write

f(x) = a1(x) + a2(x) + · · ·+ an(x) = a1(x)[1+
a2(x)

a1(x)
+ · · ·+

an(x)

a1(x)
] = a1(x)A(x) and

g(x) = b1(x) + a2(x) + · · ·+ bm(x) = b1(x)[1 +
b2(x)

b1(x)
+ · · · +

bm(x)

b1(x)
] = b1(x)B(x)

we have A(x) → 1 and B(x) → 1 as x → ∞ (since, other than the 1 in each sum, every
other term goes to 0). This means that eventually A(x) and B(x) are both close to 1, so,
eventually, say, 0.8 < A(x) < 1.2 and 0.8 < B(x) < 1.2. But then, eventually,

0.8a1(x) < a1(x)A(x) = f(x) = a1(x)A(x) < 1.2a1(x) and

0.8b1(x) < b1(x)B(x) = g(x) = b1(x)B(x) < 1.2b1(x),

[We are supposing here that the dominant terms a1(x), b1(x) are positive; if they are
not, pull a minus sign out of the entire integral first! Otherwise, the inequalities go the
opposite directions....]

and so, eventually,
2

3

a1(x)

b1(x)
=

0.8a1(x)

1.2b1(x)
<

f(x)

1.2b1(x)
<

f(x)

g(x)
<

f(x)

0.8b1(x)
<

1.2a1(x)

0.8b1(x)
=

3

2

a1(x)

b1(x)
.

So
2

3

a1(x)

b1(x)
<

f(x)

g(x)
<

3

2

a1(x)

b1(x)
.

This means that if

∫

∞

a

a1(x)

b1(x)
dx converges, then so does

3

2

∫

∞

a

a1(x)

b1(x)
dx, and since

(eventually)

∫

∞

N

f(x)

g(x)
dx is smaller than

3

2

∫

∞

N

a1(x)

b1(x)
dx,

∫

∞

N

f(x)

g(x)
dx converges, and so

∫

∞

a

f(x)

g(x)
dx converges.



On the other hand, if

∫

∞

a

a1(x)

b1(x)
dx diverges, then so does

2

3

∫

∞

a

a1(x)

b1(x)
dx, and since

(eventually)

∫

∞

N

f(x)

g(x)
dx is larger than

2

3

∫

∞

N

a1(x)

b1(x)
dx,

∫

∞

N

f(x)

g(x)
dx diverges, and so

∫

∞

a

f(x)

g(x)
dx diverges.

The same basic principle applies for most other situations. For example, dealing with
something inside of a square (or other) root:

∫

∞

2

x dx
√

x5 − 6x + 2
converges, since

√

x5 − 6x + 2 =
√

x5

√

1 −
6

x4
+

2

x5
, and

√

1 −
6

x4
+

2

x5
→ 1 as x → ∞, and so eventually

x

2
√

x5
<

x
√

x5 − 6x + 2
<

2x
√

x5
, and

since

∫

∞

a

x dx
√

x5
=

∫

∞

a

dx

x3/2
converges, so does the original integral.

Integrals with a limit of integration equal to −∞ behave similarly; we could use a
u-substitution u = −x to directly turn it into a integral in the form above.

Improper integrals where the function ‘blows up’ at an endpoint a (or inside of the
interval) also have ‘dominant terms’, usually determined by the smallest powers of x − a

in the numerator and denominator. [To make things less challenging for ourselves, we can
use a u-substitution u = x − a (or u = a − x) to move the vertical asymptote to u = 0.]
The principle is basically the same:

For example, the function
x2 − x + 2
√

x3 + x5
, near x = 0, behaves like

2
√

x3
=

2

x3/2
(whose

integral diverges), since

f(x) =
x2 − x + 2
√

x3 + x5
=

x2 − x + 2
√

x3(1 + x2)
=

1
√

x3

x2 − x + 2
√

1 + x2

and
x2 − x + 2
√

1 + x2
→

2

1
= 2 as x → 0. So we can (eventually, i.e., near x = 0) trap f(x)

between two multiples of
1

√
x3

, and so the convergence of the integral of f mirrors that of

1
√

x3
.

Generally, if we pull out the smallest powers of numerator and denominator and set
them aside, then what remains will converge to a non-zero, finite number as we approach
the asymptote. This means that the function behaves like a constant multiple of the pieces
we set aside, and so has the same convergence ‘profile’.


