Improper integrals: dominant terms decide

When we are dealing with an improper integral of the form / % dx, our perspec-
x

tive is tht the ‘dominant’ terms in the numerator and denominator determine whether or
not the integral converges. By ‘dominant’ we mean that if f(z) = aq(x)+az(z)+- - +an(z),
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then the term a;(z) dominates if @ — 0 as x — oo, for every other term i = 2,...,n.
ai
Then if a;(x) and by (z) are the dominant terms of the top and bottom, our result is that
/ M dx converges precisely when / a1 (2) dx converges.
o 9(z) o bi()
One way to justify this in any particular instance is to note that since Zl((i)) — 0 and
1
bi(z) — 0 for every 7 > 2, when we write
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we have A(z) — 1 and B(z) — 1 as # — oo (since, other than the 1 in each sum, every
other term goes to 0). This means that eventually A(x) and B(x) are both close to 1, so,
eventually, say, 0.8 < A(x) < 1.2 and 0.8 < B(z) < 1.2. But then, eventually,

0.8a1(z) < ay(x)A(z) = f(z) = a1(z)A(z) < 1.2a1(z) and
0.8b1(x) < by(x)B(x) = g(x) = by (z)B(x) < 1.2b1(x),

[We are supposing here that the dominant terms a;(z), bi(x) are positive; if they are
not, pull a minus sign out of the entire integral first! Otherwise, the inequalities go the
opposite directions....|

and so, eventually,
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This means that if / a(2) dx converges, then so does — / a1 (2) dx, and since
. a by (ZL’) 2 a bl( )
(eventually) / M dzx is smaller than 3 / a (@ / f z) dx converges, and so
N 9(z) 2y bz g(x)

/ h M dx converges.
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dx, and since

On the other hand, if/ (@) dx diverges, then so does 2 / a1 ()
a bi(@) 3 ), bi(x)

[e.e] 2 o0 o
(eventually) / f(z) dx is larger than — / a(2) dz, / =) dx diverges, and so
N 9(z) 3y bi(z) N 9(x)

/ b M dx diverges.
o 9()

The same basic principle applies for most other situations. For example, dealing with
something inside of a square (or other) root:

d 6 2
533—61._’_2 converges, since /x5 — 6z +2 = Va®4/1 — — + —, and
2 Vaz° —bx x x

2z

Jio 8.2 d tually —— < - < d
——+ — — 1 as  — o0, and so eventua ) all
zt o xd Y 2vVad Vb — 6z 42 x°
* x dx < dx
/{; /1'5 - “ 1'3/2

Integrals with a limit of integration equal to —oco behave similarly; we could use a
u-substitution u = —z to directly turn it into a integral in the form above.
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since converges, so does the original integral.

Improper integrals where the function ‘blows up’ at an endpoint a (or inside of the
interval) also have ‘dominant terms’, usually determined by the smallest powers of = — a
in the numerator and denominator. [To make things less challenging for ourselves, we can
use a u-substitution u = x — a (or u = a — x) to move the vertical asymptote to u = 0.]
The principle is basically the same:
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and rorte 2o 2 as x — 0. So we can (eventually, i.e., near z = 0) trap f(x)
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between two multiples of \/—_3, and so the convergence of the integral of f mirrors that of
x
1
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Generally, if we pull out the smallest powers of numerator and denominator and set
them aside, then what remains will converge to a non-zero, finite number as we approach
the asymptote. This means that the function behaves like a constant multiple of the pieces
we set aside, and so has the same convergence ‘profile’.



