Math 107H
Topics for the third exam

(Technically, everything covered on the first two exams plus...)

Chapter 7: Techniques of integration
Partial fractions

rational function = quotient of polynomials
Idea: integrate by writing function as sum of simpler functions

p(z)
Procedure: f(z) = —=
(0): make sure degree(p)<degree(q); do long division if it isn’t
1): factor ¢(z) into linear and irreducible quadratic factors
2): group common factors together as powers

3a): for each group (z — a)™ add together: a fin
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(3b): for each group (az? + bx + ¢)™ add together:
a1 + by P anT + by,
ax? +br+c (az? + bx + )"
(4) set f(x) = sum; solve for the ‘undetermined’ coefficients
put sum over a common denomenator (=¢(z)); set numerators equal.
always works: multiply out, group common powers, set coeffs of the two
polynomials equal
Ex:tz+3=a(z—-1)+bzr—-2)=(a+b)z+(—a—2b);1=a+b,3=—-a—2b
linear term (x — a)™: set = a, will allow you to solve for a coefficient
if n > 2, take derivatives of both sides! set x=a, gives another coeff.

Ex: r? A n B +C.’17—|—D_
Y w—1)2@2+1) z-1 (-1 22+1
Az —1)(2*+ 1)+ B(@®>+ 1) + (Cz + D)(z — 1)?

(z —1)%(z2 + 1)

L’Hopital’s Rule

sinx

indeterminate forms: limits which ‘evaluate’ to 0/0 ; e.g. 1iII(l]
T— T
LR# 1: If f(a) = g(a) =0, f and g both differentiable near a, then
e J@) S @)
im —= = lim

z—a g(x) z—a g'(x)
. . o
Other indeterminate forms: —, 0 - 00, 0o — 00, 0°, 1°°, oo?
00

!/
LR+#2: if f,g — o0 as x — a, then lim M = lim f'(@)
z—a g(x') z—a g’(l’)
Other cases: try to turn them into 0/0 or co/oo;
in the last three cases, do this by taking logs, first
Improper integrals
b

usual idea: / f(z) de = F(b) — F(a), where F'(z) = f(x)

a
Problems: a = —o0, b = oo; f blows up at a or b or somewhere in between
integral is“improper”; usual technique doesn’t work. Solution to this:



oo b
/ f(z) dz = lim / f(z) dz (similarly for a = —o0)

b—o0
b

b
(blow up at a) / f(z) dz = lim f(z) dz  (similarly for blowup at b (or both!))

r—a= J,
b

b r
(blows up at ¢ (b/w a and b)) / f(z) doz = lim_/ f(z) dz + lim f(z) dz

s—ct Jg

The integral converges if (all of the) limit(s) are finite
Comparison: 0 < f(z) < g(x) for all z;

if/ g(z) dz converges, so does / f(z) dz
- o o f(w)
Limit comparison: f,g > 0, lim —= = L, L # 0,00, then

/ f(x) dz and / g(z) dz either both converge or both diverge

Chapter 8: Infinite sequences and series
§1: Limits of sequences of numbers
A sequence is: a string of numbers; a function f:N—R; write f(n) = a,
a, = n-th term of the sequence

Basic question: convergence/divergence
lim a, =L (or a, — L) if

n—0o0
eventually all of the a,, are always as close to L as we like, i.e.

for any € > 0, there is an N so that if n > N then |a, — L| < ¢

Ex.: a, = 1/n converges to 0 ; can always choose N=1/¢
an, = (—1)™ diverges; terms of the sequence never settle down to a single number

If a,, is increasing (a,41 > a, for every n) and bounded from above
(an, < M for every n, for some M) , then a, converges (but not necessarily to M !)
limit is smallest number bigger than all of the terms of the sequence
Limit theorems for sequences
Idea: limits of sequences are a lot like limits of functions

If a,, -+ L and b,, — M, then
(ap + b, - L+ M (ap, —bp) > L—M (anby) — LM , and
(ay/by) — L/M (provided M, all b,, are # 0)
Sqeeze play theorem: if a, < b, < ¢, (for all n large enough) and
a, — L and ¢,, —» L , then b,, —» L

If a,, - L and f:R—R is continuous at L, then f(a,) — f(L)

if a,, = f(n) for some function f:R—R and mlgr;o f(z) =L, then a, - L
(allows us to use L’Hopital’s Rule!)

Another basic list: (z = fixed number, k£ = konstant)

1
——0 k—k zn =1
n
n
nw — 1 (1+£)"—>em T 50
n n!

" — { 0,if |z| < 1; 1, if z =1 ; diverges, otherwise }



Infinite series
An infinite series is an infinite sum of numbers
o0

a1 +as+az+...= Z an, (summation notation)

N
n-th term of series = a,, ; N-th partial sum of series = sy = E G,
n=1
. . . . . oo
An infinite series converges is the sequence of partial sums {s N} Ny converges

We may start the series anywhere: E G s E G s E an, etc. ;

convergence is unaffected (but the number it adds up to is!)
o0
. . a
Ex. geometric series: anp = ar™ ; g Ay =
— 1—7r

if |r| < 1; otherwise, the series diverges.
Ex. Telescoping series: partial sums sy ‘collapse’ to a simple expression

> 1 1,1 1 1,1 1 1 1
E'g';m225(5_71—”)’51":§(I+§_(N+1+N+2))

n=1

n-th term test: if Z a, converges, then a,, — 0

n=1

oo
So if the n-th terms don’t go to 0, then Z a, diverges

n=1

oo oo
Basic limit theorems: if Z a, and Z b, converge, then

n= 1 n=1
(an + by) Za,ﬁ—Zb Z(an —bp)= Zan—z b,
n=1 n=1 n=1 n=1

8

Z ka,)= kZan

n=1

o) o) N-1
Truncating a series: g Ay, = E an, + g an
n=1 n=N n=1

Comparison tests

oo
Again, think Z an , with a,, > 0 all n
n=1
Convergence depends only on partial sums sy being bounded
One easy way to determine this: compare series with
one we know converges or diverges

Comparison test: If b, > a,, > 0 for all n (past a certain point), then
oo oo o0

oo
if Z b,, converges, so does Z a, ; if Z a, diverges, so does Z by,
n= n=

n=1 n=1



(i.e., smaller than a convergent series converges; bigger than a divergent series diverges)

. . a
More refined: Limit comparison test: a,, and b, > 0 for all n, — — L
n

If L # 0 and L # oo, then Z a, anf Z b,, either both converge or both diverge
If L =0and Z b, converges, then so does Z an
If L = o0 and Z b,, diverges, then so does Z an

(Why? eventually (L/2)b, < a, < (3L/2)b, ; so can use comparison test.)

Ex: Z 1/(n® — 1) converges; L-comp with Z 1/n3
Z n/3" converges; L-comp with Z /2"
Z 1/(n1n(n?® + 1) diverges; L-comp with Z 1/(nlnn)

The integral test

oo

Idea: Z a, with a, > 0 all n, then the partial sums
n=1
{sn}¥—; forms an increasing sequence;
so converges exactly when bounded from above

If (eventually) a,, = f(n) for a decreasing function f : [a,00) =R, then

N+1 N N
/ f(iU)dJUSSN:ZanS/ f(z) dz

+1

oo oo
SO Z a,, converges exactly when / f(z) dz converges
a

n=a
oo
1 .
Ex: Z — converges exactly when p > 1  (p-series)
e
n—=

The ratio and root tests
A series Z a,, converges absolutely if Z |a,,| converges.

If Z lan| converges then Z an converges

Previous tests have you compare your series with something else (another series,
an improper integral); these tests compare a series with itself (sort of)

Ratio Test: Zan, a, # 0 all n; nli)n;o ‘GZ;H ‘ =L

If L <1 then Z an converges absolutely

If L > 1, then Z an diverges
If L =1, then try something else!

Root Test: Zan, nli_)ngo |an|V/™ = L
If L <1 then Z a, converges absolutely

If L > 1, then Z an diverges
If L =1, then try something else!




4m . nd
Ex: Z ) converges by the ratio test Z v converges by the root test

Power series

Idea: turn a series into a function, by making the terms a,, depend on
replace a,, with a,,x™ ; series of powers

oo

Z a,x" = power series centered at 0

n=0 [ee]
Z an(x —a)™ = power series centered at a
n=0

Big question: for what x does it converge? Solution from ratio test

1
1im‘“”+1‘ — I, set R =~
an L

oo
then Z an(z — a)™ converges absolutely for |z —a| < R
n=0
diverges for |t —a| > R; R = radius of convergence
C 1
Ex.: " = —— ; conv. for |z| < 1
HZO — ]

Why care about power series?
n

Idea: partial sums Z apz® are polynomials;

k=0
oo
if f(:c)zz a,z", then the poly’s make good approximations for f
n=0

Differentiation and integration of power series

Idea: if you diff. or int. each term of a power series, you get a power series
which is the deriv. or integral of the original one.

If f(x) = Z an(r — a)™ has radius of conv R,
n=0
then so does g(z) = Znan(x —a)" !, and g(z) = f'(x)
n=1
and so does g(x) = (@ —a)"*, and ¢'(z) = f(x)
—n+ 1
Ex: f(#) =Y, then  f'(z) = f(x) , 50 (since f(0) =1) f(z) =" = 3
= nl = n!
1 > o $n+1
Ex.: = " —In(l1 —2) = fi 1
X T nz::(]:v,so n(l—x) nz::(]nle (for |z| < 1)
1 oo
Ex:. arctanx = / ey —) dr = /nz:;)(_f”z)n dz =

- EDT o g < 1)



Taylor series
Idea: start with function f(z), find power series for it.

If f(z) = Z an(z — a)”, then (term by term diff.)
n=0
(n)
f™(a) = nla, ; SO a, = f '(a)
n!
. . = f(™)(a) n

Starting with f, define P(z) = Z T(x —a)",

n=0

the Taylor series for f, centered at a.

— f (k)(a) k :
P,(z) = Z (x —a)” , the n-th Taylor polynomial for f.

Ex.: f(z) = sinz, then P(z) = i %ﬁnﬂ

n=0

Big questions: Is f(x) = P(z) ? (L.e., does f(z) — P,(x) tend to 0 ?)
If so, how well do the P,’s approximate f ? (L.e., how small is f(z) — P,(z) 7)

Error estimates

o (n) (g
f) =3 LD gy

n

means that the value of f at a point z (far from a) can be determined just from
the behavior of f near a (i.e., from the derivs. of f at a). This is a very powerful property,
one that we wouldn’t ordinarily expect to be true. The amazing thing is that it often is:

— f"(a) n —~ f®(a) n
P($7Q)ZZT($_G) ;Pn(xva)zz k! (k_a) )
n=0 k=0
R, (z,a)= f(z) — P,(z,a) = n-th remainder term = error in using P,, to approxi-
mate f
Taylor’s remainder theorem : estimates the size of R, (z,a)
If f(x) and all of its derivatives (up to n + 1) are continuous on [a, b], then

i) = Paba) + 1O 4t o some ¢ in [a, b
- n Y (n+ 1)' Y Y
F(e) 1
i.e., for each z, R,,(7,a) = ~——"(x — a)"*! , for some c between a and
(n+1)!
M
so if |[F(+1)(z)|[legM for every z in [a,b], then |R,(z,a)| < it 1)'(33 —a)"tt
n !
for every z in [a, b]
) L |$|n+1
Ex.: f(z)=sinz, then |f("+V)(z)| < 1 for all z, so | R, (x,0)| < (1) — 0asn — oo
n !
. - (_l)n 2n+1
SO SINTr = Z ml’
n=0
(_1)n 2n

Similarly, cosz = Z
n=0

@) "



Use Taylor’s remainder to estimate values of functions:

e = (@) so e=el= - 1
Z (n)!’ TLE:: (n)!

I I I T S
B (1, 0)] = (n+1)!  (n+1)! ~ (n+1' (n+1)!
since e < 4 (since In(4) > (1/2)(1) + (1/4)(2) = 1)

(Riemann sum for integral of 1/x)

S0 since _ 4 = 4.58%x10~ 1
(13+1)! ’
I PTRE ISP S S to 10 decimal pl
e = — . — (0] eClima. acCes.
276 " 24 120 131 p

Other uses: if you know the Taylor series, it tells you the values of the derivatives at
the center.

oo
N (@)
Ex ew—nz::() () SO
oo
B (1-)”"‘1
re® = 7;) O SO
15!
15th deriv of ze? , at 0, is 15!(coeff of 21°) = Tl = 15
Substitutions: new Taylor series out of old ones
1 — cos(2 1 = (—1)(2z)%"
e sinta = L0000 _ L S 1P
2 2 — (2n)!
g @, et @
g:n2 23 54 %éz6 274:1;8 6!
= %0~ Tar T e~ e o

Integrate functions we can’t handle any other way:

o0 2
Ex.: e@ = Z (z) n) SO
n

(n)!

=0
(l.)2n+1

wz d —
/e v z:(]n'(2n+1)



