Math 107TH

Topics for the first exam
Chapter 4: Integration

Antiderivatives. Integral calculus is all about finding areas of things, e.g. the area
between the graph of a function f and the z-axis. This will, in the end, involve finding a
function F' whose derivative is f.

F is an antiderivative (or (indeﬁnite) integral) of f if F'(z) =f(x).

Notation: F'(z) = [ f(z) dz ; it means F’(z)=f(x) ; “the integral of f of = dee z”
Basic list: o
[a™ dz = x+1+C’(providedn7é—1) [1/zde =Injz|+C
n
~ cos(k in(k
[ sin(kz) dz = —cos(kz +C [ cos(kz) dz = sin(kz) +C
[sec?z dz = tanz + C [esc?x dz = —cotz + C
[secztanz do = secx + C [escxeots de = —cscx + C
[e* dz =e"+C
Jtanz dz = In|secz| 4+ C [secx dz = In|secx + tanz| + C
Jcotz dz = In|sinz|+ C Jescx de = —In|cscx + cotz| + C

Most differentiation rules can be turned into integration rules (although some are harder
than others; some we will wait awhile to discover.)

Basic integration rules: sum and constant multiple rules are straighforward to reverse: for
k=constant,

[k f(z)de =k [ f(z) do [(f(z)£g(z) dz = [ f(z) dz £ [g(z) dz

Sums and Sigma Notation. Idea: a lot of things can estimated by adding up alot of
tiny pieces.

Sigma notation: Z a; = a1 + - -ay, ; just add the numbers up

=1
n

Formal properties: Z ka; = k Z a; Z a; £ b;) Z a; = Z b;

i=1
Some things Worth addmg up
length of a curve: approximate curve by a collection of straight line segments

length of curve ~ ) (length of line segments)

distance travelled = (average velocity)(time of travel)
over short periods of time, avg. vel. ~ instantaneous vel.
so distance travelled ~ > (inst. vel.)(short time intervals)

Average value of a function

Average of n numbers: add the numbers, divide by n . For a function, add up lots of
values of f, divide by number of values.

1 n
avg. value of f ~ - Zf(ci)
i=1



y=f(x)

b

Area and Definite Integrals. Probably the most important thing to approximate by
sums: area under a curve.

Idea: approximate region b/w curve and z-axis by things whose areas we can easily
calculate: rectangles!

y=f(x)

a b

n
Area between graph and z-axis ~ ) (areas of the rectangles) :Z f(ci)Ax;
i=1

We define the area to be the limit of these sums as the number of rectangles goes to oo
(i.e., the width of the rectangles goes to 0), and call this the definite integral of f from a
to b:

/bf(a:) dr = nli)rgozn:f(ci)Aa:i
@ i=1

When do such limits exist? ,

Theorem If f is continuous on the interval [a, b], then / f(x) dz exists.

a
(i.e., the area under the graph is approximated by rectangles.)

Properties of definite integrals

First note: the sum used to define a definite integral doesn’t need to have f(x) > 0; the
limit still makes sense. When f is bigger than 0, we interpret the integral as area under
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the graph.
Basic properties of definite integrals:

/afx dx =0 /baf(x)dx:—/abf(x)dx
/ kf(x) da:—k/ f(z /bf(x)ig(x) dx :/abf(x) dmi/abg(x) dx
/f ®+/f M_/f

b
If m < f(x) < M for all  in [a, b], then m(b — a) §/ f(x) de < M(b—a)

b
More generally, if f(z) < g(z) for all z in [a, b], then / f(z) de < / g(x) dz

b—a/ fl@

Mean Value Theorem for integrals: If f is continuous in [a, b], then there is a ¢ in [a, b] so

that f(c ::-———-/[ f(z) dz

Average value of f : formalize our old idea! avg(f

The fundamental theorems of calculus. Formally, / f(x) dx depends on a and b.
Make this explicit: ¢

/ f(t) dt = F(x) is a function of z.

(x) = the area under the graph of f, from a to x.

Fund. Thm. of Calc (# 2): If f is continuous, then F'(z) = f(z) (F is an
antiderivative of f 1)

Since any two antiderivatives differ by a constant, and F'(b / f(t) dt, we get
Fund. Thm. of Calc (# 1): If f is continuous, and F' is an antiderivative of f, then

/ f(z) dz = F(b) - F(a) = F(z) [\

Ex: / sinx de = (—cosm) — (—cos0) =2
0
Building antiderivatives:

x
= / Vsint dt is an antiderivative of f(z) = v/sinx
a

CES
= / V1+t2 dt = F(x®) — F(z?), where
xr2
F'(z) =V1+ 22,50 G'(x) = F'(23)(32?) — F'(2?)(2x)...
Integration by substiution. The idea: reverse the chain rule!

If g(x) = u, then %f(g(x)):%f(u) — f'(w) %
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soff —dx—ff ) du = f(u) +c
[ flg( ) dz ; set u = g(z) , then du = ¢'(x) dz , so [ f(g(x))g'(z) de = [ f(u) du

Where u= g(a:)
Example: [z(z +2—3)* dz ; set u=2? — 3, so du=2x dz . Then

1 1
[x(z+2-3)* de = —f(.’l?—|—2—3)42.1' dx :§f1f1 du |y—pz_3 =

1ud (x2 —3)5
g5 O hmtma =
The three most important points:
1. Make sure that you calculate (and then set aside) your du before doing step 2!
2. Make sure everything gets changed from x’s to u’s

3. Don’t push z’s through the integral sign! They’re not constants!

+c

We can use u-substitution directly with a definite integral, provided we remember that
b z=b
/ f(x) dz really means / f(x) dz , and we remember to change all of the z’s to
a r=a
u’s!

2
Ex:/ :1:(1+$2)6dx;setu:1+x2,du:2xd:1:.When$:1,u:2;when:1::2,u:5;
1

2 1 5
SO / z(14 22)% do = —/ u® du = ...
1 2 J2

Chapter 5: Applications of integration

Area between curves. Region between two curves; approximate by rectangles

right b
Area = / (top) — (bottom) dz = / f(z) —g(z) dx
left a
top
Integrate dy: Area = / (right) — (left) dy
bottom
If what the function at top/bottom is changes, cut the interval into pieces, and use

b c b
=)+
a a C
Sometimes to calculate area between f(x) and g(z), need to first figure out limits of

integration; solve f(z) = g(z), then decide whicxh one is bigger in between each pair of
solutions.



Volume by slicing. To calculate volume, aprroximate region by objects whose volume

we can calculate.

Volume = »(volumes of ‘cylinders’)
= Y (area of base)(height) = > (area of cross-section)Ax; .

right
So volume = / (area of cross section) dz
left

Solids of revolution: disks and washers. Solid of revolution: take a region in the
plane and revolve it around an axis in the plane.

region

C
rotate

take cross-sections perpendicular to axis of revolution ; cross-section = disk (area=7r?2) or
washer (area=mR? — 7r?)

rotate around z-axis: write 7 (and R) as functions of z, integrate dx

rotate around y-axis: write 7 (and R) as functions of y, integrate dy

right top

A(z) dx or volume = / A(y) dy

bottom

Otherwise, everything is as before: volume = /
left

The same is true if axis is parallel to x— or y—axis; r and R just change (we add a
constant).

Cylindrical shells. Different picture, same volume! Solid of revolution; use cylinders
centered on the axis of revolution. The intersection is a cylinder, with area = (circumfer-
ence)(height) = 27rh

] top

right
volume = / (area of cylinder) dx or / (area of cylinder) dy!)
!

eft bottom



region

C
rotate

revolve around vertical line: integrate dx
revolve around horizontal line: integrate dy
Ex: region in plane between y = 4z, y = 22, revolved around y-axis

4
left=0, right=4, r = 2, h = (4z — 2?) volume = / 2nx (4 — 2°) da
0

Arclength and surface area

C
rotate

Arclength. Idea: approximate a curve by lots of short line segments; length of curve ~
sum of lengths of line segments.
Line segment between (¢;, f(¢;)) and (¢i11, f(civ1)):

\/1 + (f(CH—l) — f(Cz))z . (Ci+1 — Ci) ~+\/1+ (f’(Ci))Z - Az

Ci+1 — G4

right

So length of curve = V14 (f'(2))? do

left

The problem: integrating /1 + (f/(2))2 ! Sometimes, 1 + (f/(z))? turns out to be a
perfect square.....

Surface area. Idea: find the area of a surface (of revolution) by approximating the surface
by things whose area we can figure out. Frustrum of a cone!

area of frustrum = 7+ (f(ciy1) + f(ci)) - \/1 + <f(cz'+1) — f(c)

Ci+1 — G

) (e — )
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right

~ 2 f(ci- 1+ (f'(¢;))? - Azx; . So area of surface = / 2rf(x)\/1+ (f'(x))? dx

left
The problem: same problem! But sometimes it’s possible to do.... Ex: for f(z) =

Vr2 — x2, the thing to integrate simplifies to: 27r !

Work. In physics, one studies the behavior of objects when acted upon by various forces.
Newton’s Laws provide the basic connection between a force acting on an object and the
effect it has on its motion:

F=ma; Force = mass x acceleration
Two basic quantites to compute, when you know the force, are impulse and work.

Impulse measures the effect of a force over time. If a constant force F' is applied to
an object, over a time interval of length 7', then the impulse imparted to the object is
Impulse = J = F-T. But typically the force being apllied will not be constant. Then
we do what we usually do: look at the impulse generated by the force over a short time
interval (where ther force is effectively constant), and add up the impulses imparted over
all of these little intervals.

J ~ > F(t;) At , which looks suspiciously like an integral. So we define .J = fOT F(t)dt

But in classical physics, where F(t) = m - a(t) = m - z'"(t), if we can treat m as a
constant, then we can integrate F', so

J=m-2'(T)—m-2'(0) =m-v(T) —m-v(0)

is the change of momentum of the object.

In physics, work represents force being applied across a distance. If a constant force F' is
applied to an object, which moves the object a distance D, then the work done on the
object is W=F-D. Again, if the force applied across this distance is not constant,
then we interpret work, in stead, as an integral, by cutting the distance covered into small
pieces of length dx :
W x> F(x;) Az ,s0 W = fODF(a:) dx

An interesting application of these ideas comes when trying to compute the amount of
work necessary to pump out a tank of some known shape. If the tank has height D (we
will think of the top of the tank as being at z = 0 and the bottom being at x = D), and
at height X our cross-section of the tank has area A(xz), then if (as when we computed
volume) we think of the fluid in the tank as being a stack of cylinders with height Az, the
work necessary to lift the slide at height x to the top of the tank will be

W =(force)(distance) = (m - g) -z = ((A(z) - Ax)pg) - ©
where p is the density of the fluid, m = mass = (volume)(density), and g is the accelration
due to gravity (which is the force we need to overcome to push the fluid up out of the
tank). Therefore, the work done to empty the tank is approximated by a sum of such
quantities, which in turn models a definite integral; the work done in emptying the tank is

W =pg [, 2A(z) do



