EXERCISES 2.7

In Exercises 1-4, use the grid and a straight edge to make a rough estimate of the slope of the curve (in y-units per x-unit) at the points P_1 and P_2 . Graphs can shift during a press run, so your estimates may be somewhat different from those in the back of the book.

1.

3.

In Exercises 5-10, find an equation for the tangent to the curve at the given point. Then sketch the curve and tangent together.

5.
$$v = 3 - x^2$$
. $(-1.2)^{-1}$

5.
$$y = 3 - x^2$$
, $(-1, 2)$ 6. $y = (x - 1)^2 + 1$, $(1, 1)$

7.
$$y = 2\sqrt{x}$$
, (1, 2)

7.
$$y = 2\sqrt{x}$$
, (1,2) 8. $y = \frac{1}{x^2}$, (-1,1)

9.
$$y = x^3 + 1$$
, $(-2, -7)$

9.
$$y = x^3 + 1$$
, $(-2, -7)$ **10.** $y = \frac{1}{x^3}$, $\left(-2, -\frac{1}{8}\right)$

In Exercises 11-18, find the slope of the function's graph at the given point. Then find an equation for the line tangent to the graph there.

11.
$$f(x) = x^2 + 1$$
, (2.5)

11.
$$f(x) = x^2 + 1$$
, (2, 5) 12. $f(x) = x - 2x^2$, (1, -1)

13.
$$g(x) = \frac{x}{x-2}$$
, (3,3) 14. $g(x) = \frac{8}{x^2}$, (2,2)

14.
$$g(x) = \frac{8}{x^2}$$
, (2, 2)

15.
$$h(t) = t^3 - t$$
, (2, 6)

16.
$$h(t) = t^3 + 3t$$
 (1.4)

17.
$$f(x) = \sqrt{x}$$
 (4.2)

15.
$$h(t) = t^3 - t$$
, (2, 6)
16. $h(t) = t^3 + 3t$, (1, 4)
17. $f(x) = \sqrt{x}$, (4, 2)
18. $f(x) = \sqrt{x+1}$, (8, 3)

In Exercises 19-22, find the slope of the curve at the point indicated

19.
$$y = 5x^2$$
, $x = -1$

19.
$$y = 5x^2$$
, $x = -1$ 20. $y = 1 - x^2$, $x = 2$

21.
$$y = \frac{1}{x-1}, \quad x = 3$$

21.
$$y = \frac{1}{x-1}$$
, $x = 3$ **22.** $y = \frac{x-1}{x+1}$, $x = 0$

At what points do the graphs of the functions in Exercises 23 and have horizontal tangents?

23.
$$f(x) = x^2 + 4x - 1$$

24.
$$g(x) = x^3 - 3x$$

25. Find equations of all lines having slope
$$-1$$
 that are tangent to the curve $y = 1/(x - 1)$.

26. Find an equation of the straight line having slope
$$1/4$$
 that is targent to the curve $y = \sqrt{x}$.

28. Speed of a rocket At
$$t$$
 sec after liftoff, the height of a rocket $3t^2$ ft. How fast is the rocket climbing 10 sec after liftoff?

29. Circle's changing area What is the rate of change of the area a circle
$$(A = \pi r^2)$$
 with respect to the radius when the radius $r = 3$?

30. Ball's changing volume What is the rate of change of the volume of a ball
$$(V = (4/3)\pi r^3)$$
 with respect to the radius when the radius is $r = 2$?

31. Show that the line
$$y = mx + b$$
 is its own tangent at any point $(x_0, mx_0 + b)$.

32. Find the slope of the tangent to the curve
$$y = 1/\sqrt{x}$$
 at the point where $x = 4$.

$$f(x) = \begin{cases} x^2 \sin{(1/x)}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

have a tangent at the origin? Give reasons for your answer.

34. Does the graph of

$$g(x) = \begin{cases} x \sin(1/x), & x \neq 0 \\ 0, & x = 0 \end{cases}$$

have a tangent at the origin? Give reasons for your answer.

Vertical Tangents We say that the curve y = f(x) has a vertical tan gent at the point where $x = x_0$ if $\lim_{h\to 0} (f(x_0 + h) - f(x_0))/h = \infty$ or $-\infty$. Vertical tangent at x = 0 (see accompanying figure):

$$\lim_{h \to 0} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0} \frac{h^{1/3} - 0}{h}$$
$$= \lim_{h \to 0} \frac{1}{h^{2/3}} = \infty$$

119

VERTICAL TANGENT AT ORIGIN

No vertical tangent at x = 0 (see next figure):

$$\lim_{h \to 0} \frac{g(0+h) - g(0)}{h} = \lim_{h \to 0} \frac{h^{2/3} - 0}{h}$$
$$= \lim_{h \to 0} \frac{1}{h^{1/3}}$$

does not exist, because the limit is ∞ from the right and $-\infty$ from the

35. Does the graph of

and 2

is tan

m the

sec is

ket is

rea of ius is

n the

point

point

tan-

d?

$$f(x) = \begin{cases} -1, & x < 0 \\ 0, & x = 0 \\ 1, & x > 0 \end{cases}$$

have a vertical tangent at the origin? Give reasons for your answer.

36. Does the graph of

$$U(x) = \begin{cases} 0, & x < 0 \\ 1, & x \ge 0 \end{cases}$$

have a vertical tangent at the point (0, 1)? Give reasons for your

a. Graph the curves in Exercises 37–46. Where do the graphs appear to have vertical tangents?

37.
$$y = x^{2/5}$$
 38. $y = x^{4/5}$

39.
$$y = x^{1/5}$$
 40. $y = x^{3/5}$

39.
$$y = x^{1/5}$$

40. $y = x^{3/5}$
41. $y = 4x^{2/5} - 2x$
42. $y = x^{5/3} - 5x^2$

43.
$$y = x^{2/3} - (x - 1)^{1/3}$$
 44. $y = x^{1/3} + (x - 1)^{1/3}$

41.
$$y = 4x^{2/5} - 2x$$

42. $y = x^{5/3} - 5x^{2/3}$
43. $y = x^{2/3} - (x - 1)^{1/3}$
44. $y = x^{1/3} + (x - 1)^{1/3}$
45. $y = \begin{cases} -\sqrt{|x|}, & x \le 0 \\ \sqrt{x}, & x > 0 \end{cases}$
46. $y = \sqrt{|4 - x|}$

COMPUTER EXPLORATIONS

Use a CAS to perform the following steps for the functions in Exercises 47-50.

a. Plot
$$y = f(x)$$
 over the interval $(x_0 - 1/2) \le x \le (x_0 + 3)$.

b. Holding x_0 fixed, the difference quotient

$$q(h) = \frac{f(x_0 + h) - f(x_0)}{h}$$

at x_0 becomes a function of the step size h. Enter this function into your CAS workspace.

c. Find the limit of q as $h \to 0$.

d. Define the secant lines $y = f(x_0) + q \cdot (x - x_0)$ for h = 3, 2, and 1. Graph them together with f and the tangent line over the interval in part (a).

47.
$$f(x) = x^3 + 2x$$
, $x_0 = 0$ **48.** $f(x) = x + \frac{5}{x}$, $x_0 = 1$

49.
$$f(x) = x + \sin(2x)$$
, $x_0 = \pi/2$

50.
$$f(x) = \cos x + 4 \sin(2x)$$
, $x_0 = \pi$

Questions to Guide Your Review

- 1. What is the average rate of change of the function g(t) over the interval from t = a to t = b? How is it related to a secant line?
- 2. What limit must be calculated to find the rate of change or slope of a function g(t) at $t = t_0$?
- 3. What is an informal or intuitive definition of the limit

$$\lim_{x \to x_0} f(x) = L^c$$

Why is the definition "informal"? Give examples.

- **4.** Does the existence and value of the limit of a function f(x) as xapproaches x_0 ever depend on what happens at $x = x_0$? Explain and give examples.
- 5. What function behaviors might occur for which the limit may fail to exist? Give examples.
- 6. What theorems are available for calculating limits? Give examples of how the theorems are used.