- 1. For the function g(x) graphed here, find the following limits or explain why they do not exist.
 - a. $\lim_{x\to 1}g(x)$

hat

ınd

:nt:

ı in

the

- c. $\lim_{x \to 3} g(x)$

- 2. For the function f(t) graphed here, find the following limits or explain why they do not exist.
 - $\mathbf{a.} \lim_{t \to -2} f(t)$
- c. $\lim_{t\to 0} f(t)$

- 3. Which of the following statements about the function y = f(x)graphed here are true, and which are false?
 - a. $\lim_{x \to a} f(x)$ exists.
 - **b.** $\lim_{x \to 0} f(x) = 0$.
 - c. $\lim_{x \to 0} f(x) = 1$.
 - **d.** $\lim_{x \to 0} f(x) = 1$.
 - e. $\lim_{x \to 0} f(x) = 0$.
 - **f.** $\lim_{x \to 0} f(x)$ exists at every point x_0 in (-1, 1).

- 4. Which of the following statements about the function y = f(x)graphed here are true, and which are false?
 - a. $\lim_{x \to 2} f(x)$ does not exist.
 - **b.** $\lim_{x \to 2} f(x) = 2$.

- c. $\lim_{x \to a} f(x)$ does not exist.
- **d.** $\lim_{x \to \infty} f(x)$ exists at every point x_0 in (-1, 1).
- e. $\lim_{x \to r_0} f(x)$ exists at every point x_0 in (1, 3).

In Exercises 5 and 6, explain why the limits do not exist.

$$5. \lim_{x \to 0} \frac{x}{|x|}$$

6.
$$\lim_{x \to 1} \frac{1}{x - 1}$$

- 7. Suppose that a function f(x) is defined for all real values of x except $x = x_0$. Can anything be said about the existence of $\lim_{x\to x_0} f(x)$? Give reasons for your answer.
- 8. Suppose that a function f(x) is defined for all x in [-1, 1]. Can anything be said about the existence of $\lim_{x\to 0} f(x)$? Give reasons for your answer.
- 9. If $\lim_{x\to 1} f(x) = 5$, must f be defined at x = 1? If it is, must f(1) = 5? Can we conclude anything about the values of f at x = 1? Explain.
- 10. If f(1) = 5, must $\lim_{x\to 1} f(x)$ exist? If it does, then must $\lim_{x\to 1} f(x) = 5$? Can we conclude anything about $\lim_{x\to 1} f(x)$? Explain.

Find the limits in Exercises 11-28.

11.
$$\lim_{x \to -7} (2x + 5)$$

12.
$$\lim_{x \to 12} (10 - 3x)$$

13.
$$\lim_{x \to 0} (-x^2 + 5x - 2)$$

13.
$$\lim_{x \to 2} (-x^2 + 5x - 2)$$
14. $\lim_{x \to -2} (x^3 - 2x^2 + 4x + 8)$
15. $\lim_{t \to 6} 8(t - 5)(t - 7)$
16. $\lim_{s \to 2/3} 3s(2s - 1)$

15.
$$\lim_{t\to 0} 8(t-5)(t-7)$$

16.
$$\lim_{s \to 2/2} 3s(2s-1)$$

17.
$$\lim_{x\to 2} \frac{x+3}{x+6}$$

18.
$$\lim_{x \to 5} \frac{4}{x - 7}$$

19.
$$\lim_{y \to -5} \frac{y^2}{5 - y}$$

20.
$$\lim_{x \to 0} \frac{y+2}{x}$$

21.
$$\lim_{x \to -1} 3(2x - 1)^2$$

20.
$$\lim_{y \to 2} \frac{y+2}{y^2 + 5y + 6}$$

22. $\lim_{x \to -4} (x+3)^{1984}$

23.
$$\lim_{y \to -3} (5 - y)^{4/3}$$

24.
$$\lim_{z \to 0} (2z - 8)^{1/3}$$

25.
$$\lim_{h\to 0} \frac{3}{\sqrt{2h+1}}$$

26.
$$\lim_{h\to 0} \frac{5}{\sqrt{5h+4}+1}$$

25.
$$\lim_{h \to 0} \frac{3}{\sqrt{3h+1}+1}$$
26. $\lim_{h \to 0} \frac{5}{\sqrt{5h+4}+2}$
27. $\lim_{h \to 0} \frac{\sqrt{3h+1}-1}{h}$
28. $\lim_{h \to 0} \frac{\sqrt{5h+4}-2}{h}$

28.
$$\lim_{h\to 0} \frac{\sqrt{5h+4}-2}{h}$$

Find the limits in Exercises 29-46.

29.
$$\lim_{x \to 5} \frac{x-5}{x^2-25}$$

30.
$$\lim_{x \to -3} \frac{x+3}{x^2+4x+3}$$

31.
$$\lim_{x \to -5} \frac{x^2 + 3x - 10}{x + 5}$$

32.
$$\lim_{x\to 2} \frac{x^2-7x+10}{x-2}$$

33.
$$\lim_{t \to 1} \frac{t^2 + t - 2}{t^2 - 1}$$

34.
$$\lim_{t \to -1} \frac{t^2 + 3t + 2}{t^2 - t - 2}$$

35.
$$\lim_{x \to -2} \frac{-2x - 4}{x^3 + 2x^2}$$

$$36. \lim_{y \to 0} \frac{5y^3 + 8y^2}{3y^4 - 16y^2}$$

37.
$$\lim_{u \to 1} \frac{u^4 - 1}{u^3 - 1}$$

38.
$$\lim_{v \to 2} \frac{v^3 - 8}{v^4 - 16}$$

39.
$$\lim_{x\to 9} \frac{\sqrt{x}-3}{x-9}$$

40.
$$\lim_{x \to 4} \frac{4x - x^2}{2 - \sqrt{x}}$$

41.
$$\lim_{x \to 1} \frac{x-1}{\sqrt{x+3}-2}$$

42.
$$\lim_{x \to -1} \frac{\sqrt{x^2 + 8} - 3}{x + 1}$$

43.
$$\lim_{x \to 2} \frac{\sqrt{x^2 + 12} - 4}{x - 2}$$

44.
$$\lim_{x \to -2} \frac{x+2}{\sqrt{x^2+5}-3}$$

45.
$$\lim_{x \to -3} \frac{2 - \sqrt{x^2 - 5}}{x + 3}$$

46.
$$\lim_{x\to 4} \frac{4-x}{5-\sqrt{x^2+9}}$$

Find the limits in Exercises 47-54

47.
$$\lim_{x\to 0} (2\sin x - 1)$$

48.
$$\lim_{x \to 0} \sin^2 x$$

49.
$$\lim_{x\to 0} \sec x$$

50.
$$\lim_{x\to 0} \tan x$$

51.
$$\lim_{x\to 0} \frac{1+x+\sin x}{3\cos x}$$

51.
$$\lim_{x \to 0} \frac{1 + x + \sin x}{3\cos x}$$
 52. $\lim_{x \to 0} (x^2 - 1)(2 - \cos x)$ 53. $\lim_{x \to 0} \sqrt{x + 1} \cos^{1/3} x$ 54. $\lim_{x \to 0} \sqrt{1 + \cos^2 x}$

53.
$$\lim_{x\to 0} \sqrt{x+1} \cos^{1/3} x$$

54.
$$\lim_{x\to 0} \sqrt{1 + \cos^2 x}$$

55. Suppose $\lim_{x\to 0} f(x) = 1$ and $\lim_{x\to 0} g(x) = -5$. Name the rules in Theorem 1 that are used to accomplish steps (a), (b), and (c) of the following calculation.

$$\lim_{x \to 0} \frac{2f(x) - g(x)}{(f(x) + 7)^{2/3}} = \frac{\lim_{x \to 0} (2f(x) - g(x))}{\lim_{x \to 0} (f(x) + 7)^{2/3}}$$
(a)

$$= \frac{\lim_{x \to 0} 2f(x) - \lim_{x \to 0} g(x)}{\left(\lim_{x \to 0} \left(f(x) + 7\right)\right)^{2/3}}$$

$$2 \lim_{x \to 0} f(x) - \lim_{x \to 0} g(x)$$
(b)

$$= \frac{2 \lim_{x \to 0} f(x) - \lim_{x \to 0} g(x)}{\left(\lim_{x \to 0} f(x) + \lim_{x \to 0} 7\right)^{2/3}}$$

$$= \frac{(2)(1) - (-5)}{(1+7)^{2/3}} = \frac{7}{4}$$
(c)

56. Let $\lim_{x\to 1} h(x) = 5$, $\lim_{x\to 1} p(x) = 1$, and $\lim_{x\to 1} r(x) = 2$. Name the rules in Theorem 1 that are used to accomplish steps (a), (b), and (c) of the following calculation.

$$\lim_{x \to 1} \frac{\sqrt{5h(x)}}{p(x)(4 - r(x))} = \frac{\lim_{x \to 1} \sqrt{5h(x)}}{\lim_{x \to 1} (p(x)(4 - r(x)))}$$
(a)

$$= \frac{\sqrt{\lim_{x \to 1} 5h(x)}}{\left(\lim_{x \to 1} p(x)\right) \left(\lim_{x \to 1} (4 - r(x))\right)}$$
 (b)

$$= \frac{\sqrt{5 \lim_{x \to 1} h(x)}}{\left(\lim_{x \to 1} p(x)\right) \left(\lim_{x \to 1} 4 - \lim_{x \to 1} r(x)\right)}$$

$$= \frac{\sqrt{(5)(5)}}{(1)(4-2)} = \frac{5}{2}$$

57. Suppose $\lim_{x\to c} f(x) = 5$ and $\lim_{x\to c} g(x) = -2$. Find

a.
$$\lim_{x \to c} f(x)g(x)$$

b.
$$\lim_{x \to c} 2f(x)g(x)$$

c.
$$\lim_{x \to a} (f(x) + 3g(x))$$

c.
$$\lim_{x \to c} (f(x) + 3g(x))$$
 d. $\lim_{x \to c} \frac{f(x)}{f(x) - g(x)}$

58. Suppose $\lim_{x\to 4} f(x) = 0$ and $\lim_{x\to 4} g(x) = -3$. Find

a.
$$\lim_{x \to 4} (g(x) + 3)$$
 b. $\lim_{x \to 4} xf(x)$

b.
$$\lim_{x \to a} xf(x)$$

c.
$$\lim_{x \to A} (g(x))^{x}$$

c.
$$\lim_{x \to 4} (g(x))^2$$
 d. $\lim_{x \to 4} \frac{g(x)}{f(x) - 1}$

59. Suppose $\lim_{x\to b} f(x) = 7$ and $\lim_{x\to b} g(x) = -3$. Find

a.
$$\lim_{x \to b} (f(x) + g(x))$$

b.
$$\lim_{x \to b} f(x) \cdot g(x)$$

c.
$$\lim_{x \to b} 4g(x)$$

d.
$$\lim_{x \to \infty} f(x)/g(x)$$

60. Suppose that $\lim_{x\to -2} p(x) = 4$, $\lim_{x\to -2} r(x) = 0$, and $\lim_{x\to -2} s(x) = -3$. Find

a.
$$\lim_{x \to -2} (p(x) + r(x) + s(x))$$

b.
$$\lim_{x \to -2} p(x) \cdot r(x) \cdot s(x)$$

c.
$$\lim_{x \to -2} (-4p(x) + 5r(x))/s(x)$$

Because of their connection with secant lines, tangents, and instantaneous rates, limits of the form

$$\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$$

occur frequently in calculus. In Exercises 61-66, evaluate this limit for the given value of x and function f.

61.
$$f(x) = x^2$$
, $x = 1$

62.
$$f(x) = x^2$$
, $x = -2$

63.
$$f(x) = 3x - 4$$
, $x = 2$ **64.** $f(x) = 1/x$, $x = -2$

64.
$$f(x) = 1/x$$
, $x = -2$

65.
$$f(x) = \sqrt{x}, \quad x = 7$$

66.
$$f(x) = \sqrt{3x+1}, \quad x=0$$

67. If
$$\sqrt{5 - 2x^2} \le f(x) \le \sqrt{5 - x^2}$$
 for $-1 \le x \le 1$, find $\lim_{x \to 0} f(x)$.

68. If
$$2 - x^2 \le g(x) \le 2 \cos x$$
 for all x, find $\lim_{x \to 0} g(x)$.

69. a. It can be shown that the inequalities

$$1 - \frac{x^2}{6} < \frac{x \sin x}{2 - 2 \cos x} < 1$$

hold for all values of x close to zero. What, if anything, does this tell you about

$$\lim_{x \to 0} \frac{x \sin x}{2 - 2 \cos x}$$
?

Give reasons for your answer.

- **11** b. Graph $y = 1 (x^2/6)$, $y = (x \sin x)/(2 2 \cos x)$, and y = 1 together for $-2 \le x \le 2$. Comment on the behavior of the graphs as $x \to 0$.
- 70. a. Suppose that the inequalities

(b)

anta-

limit

$$\frac{1}{2} - \frac{x^2}{24} < \frac{1 - \cos x}{x^2} < \frac{1}{2}$$

hold for values of x close to zero. (They do, as you will see in Section 8.9.) What, if anything, does this tell you about

$$\lim_{x\to 0}\frac{1-\cos x}{x^2}?$$

Give reasons for your answer.

- **b.** Graph the equations $y = (1/2) (x^2/24)$, $y = (1 \cos x)/x^2$, and y = 1/2 together for $-2 \le x \le 2$. Comment on the behavior of the graphs as $x \to 0$.
- You will find a graphing calculator useful for Exercises 71-80.
 - 71. Let $f(x) = (x^2 9)/(x + 3)$.
 - a. Make a table of the values of f at the points x = -3.1, -3.01, -3.001, and so on as far as your calculator can go. Then estimate $\lim_{x\to -3} f(x)$. What estimate do you arrive at if you evaluate f at x = -2.9, -2.99, -2.999, ... instead?
 - **b.** Support your conclusions in part (a) by graphing f near $x_0 = -3$ and using Zoom and Trace to estimate y-values on the graph as $x \to -3$.
 - c. Find $\lim_{x\to -3} f(x)$ algebraically, as in Example 7.
 - 72. Let $g(x) = (x^2 2)/(x \sqrt{2})$.
 - a. Make a table of the values of g at the points x = 1.4, 1.41, 1.414, and so on through successive decimal approximations of $\sqrt{2}$. Estimate $\lim_{x \to \sqrt{2}} g(x)$.
 - **b.** Support your conclusion in part (a) by graphing g near $x_0 = \sqrt{2}$ and using Zoom and Trace to estimate y-values on the graph as $x \to \sqrt{2}$.
 - c. Find $\lim_{x\to\sqrt{2}} g(x)$ algebraically.
 - 73. Let $G(x) = (x + 6)/(x^2 + 4x 12)$.
 - a. Make a table of the values of G at x = -5.9, -5.99, -5.999, and so on. Then estimate $\lim_{x \to -6} G(x)$. What estimate do you arrive at if you evaluate G at $x = -6.1, -6.01, -6.001, \dots$ instead?
 - b. Support your conclusions in part (a) by graphing G and using Zoom and Trace to estimate y-values on the graph as $x \rightarrow -6$.
 - c. Find $\lim_{x\to -6} G(x)$ algebraically.
 - 74. Let $h(x) = (x^2 2x 3)/(x^2 4x + 3)$.
 - a. Make a table of the values of h at x = 2.9, 2.99, 2.999, and so on. Then estimate $\lim_{x\to 3} h(x)$. What estimate do you arrive at if you evaluate h at $x = 3.1, 3.01, 3.001, \ldots$ instead?
 - b. Support your conclusions in part (a) by graphing h near $x_0 = 3$ and using Zoom and Trace to estimate y-values on the graph as $x \rightarrow 3$.

- c. Find $\lim_{x\to 3} h(x)$ algebraically.
- 75. Let $f(x) = (x^2 1)/(|x| 1)$.
 - **a.** Make tables of the values of f at values of x that approach $x_0 = -1$ from above and below. Then estimate $\lim_{x \to -1} f(x)$.
 - **b.** Support your conclusion in part (a) by graphing f near $x_0 = -1$ and using Zoom and Trace to estimate y-values on the graph as $x \to -1$.
 - **c.** Find $\lim_{x\to -1} f(x)$ algebraically.
- **76.** Let $F(x) = (x^2 + 3x + 2)/(2 |x|)$.
 - **a.** Make tables of values of F at values of x that approach $x_0 = -2$ from above and below. Then estimate $\lim_{x \to -2} F(x)$.
 - **b.** Support your conclusion in part (a) by graphing F near $x_0 = -2$ and using Zoom and Trace to estimate y-values on the graph as $x \to -2$.
 - c. Find $\lim_{x\to -2} F(x)$ algebraically.
- 77. Let $g(\theta) = (\sin \theta)/\theta$.
 - a. Make a table of the values of g at values of θ that approach $\theta_0 = 0$ from above and below. Then estimate $\lim_{\theta \to 0} g(\theta)$.
 - **b.** Support your conclusion in part (a) by graphing g near $\theta_0 = 0$.
- 78. Let $G(t) = (1 \cos t)/t^2$.
 - **a.** Make tables of values of G at values of t that approach $t_0 = 0$ from above and below. Then estimate $\lim_{t\to 0} G(t)$.
 - **b.** Support your conclusion in part (a) by graphing G near $t_0 = 0$.
- **79.** Let $f(x) = x^{1/(1-x)}$.
 - a. Make tables of values of f at values of x that approach $x_0 = 1$ from above and below. Does f appear to have a limit as $x \to 1$? If so, what is it? If not, why not?
 - **b.** Support your conclusions in part (a) by graphing f near $x_0 = 1$.
- **80.** Let $f(x) = (3^x 1)/x$.
 - a. Make tables of values of f at values of x that approach $x_0 = 0$ from above and below. Does f appear to have a limit as $x \to 0$? If so, what is it? If not, why not?
 - **b.** Support your conclusions in part (a) by graphing f near $x_0 = 0$.
- 81. If $x^4 \le f(x) \le x^2$ for x in [-1, 1] and $x^2 \le f(x) \le x^4$ for x < -1 and x > 1, at what points c do you automatically know $\lim_{x \to c} f(x)$? What can you say about the value of the limit at these points?
- 82. Suppose that $g(x) \le f(x) \le h(x)$ for all $x \ne 2$ and suppose that

$$\lim_{x\to 2}g(x)=\lim_{x\to 2}h(x)=-5.$$

Can we conclude anything about the values of f, g, and h at x = 2? Could f(2) = 0? Could $\lim_{x\to 2} f(x) = 0$? Give reasons for your answers.

83. If
$$\lim_{x \to 4} \frac{f(x) - 5}{x - 2} = 1$$
, find $\lim_{x \to 4} f(x)$.

84. If
$$\lim_{x \to -2} \frac{f(x)}{x^2} = 1$$
, find

$$\mathbf{a.} \lim_{x \to -2} f(x)$$

b.
$$\lim_{x \to -2} \frac{f(x)}{x}$$

85. a. If
$$\lim_{x\to 2} \frac{f(x)-5}{x-2} = 3$$
, find $\lim_{x\to 2} f(x)$.

b. If
$$\lim_{x \to 2} \frac{f(x) - 5}{x - 2} = 4$$
, find $\lim_{x \to 2} f(x)$.

86. If
$$\lim_{x \to 0} \frac{f(x)}{x^2} = 1$$
, find

a.
$$\lim_{x\to 0} f(x)$$

$$\mathbf{b.} \quad \lim_{x \to 0} \frac{f(x)}{x}$$

17. 87. a. Graph $g(x) = x \sin(1/x)$ to estimate $\lim_{x\to 0} g(x)$, zooming in on the origin as necessary.

b. Confirm your estimate in part (a) with a proof.

- **188.** a. Graph $h(x) = x^2 \cos(1/x^3)$ to estimate $\lim_{x\to 0} h(x)$, zooming in on the origin as necessary.
 - b. Confirm your estimate in part (a) with a proof.

COMPUTER EXPLORATIONS

In Exercises 89-94, use a CAS to perform the following steps:

- **a.** Plot the function near the point x_0 being approached.
- b. From your plot guess the value of the limit.

89.
$$\lim_{x\to 2} \frac{x^4-16}{x-2}$$

90.
$$\lim_{x \to -1} \frac{x^3 - x^2 - 5x - 3}{(x+1)^2}$$

89.
$$\lim_{x \to 2} \frac{\frac{1}{x-10}}{x-2}$$
91. $\lim_{x \to 0} \frac{\sqrt[3]{1+x}-1}{x}$

92.
$$\lim_{x\to 3} \frac{x^2-9}{\sqrt{x^2+7}-4}$$

93.
$$\lim_{x \to 0} \frac{1 - \cos x}{x \sin x}$$

94.
$$\lim_{x\to 0} \frac{2x^2}{3-3\cos x}$$

The Precise Definition of a Limit

We now turn our attention to the precise definition of a limit. We replace vague phrases like "gets arbitrarily close to" in the informal definition with specific conditions that can be applied to any particular example. With a precise definition, we can prove the limit properties given in the preceding section and establish many important limits.

To show that the limit of f(x) as $x \to x_0$ equals the number L, we need to show that the gap between f(x) and L can be made "as small as we choose" if x is kept "close enough" to x_0 . Let us see what this would require if we specified the size of the gap between f(x) and L

Consider the function y = 2x - 1 near $x_0 = 4$. Intuitively it is clear that y is close to 7 when x is close to 4, so $\lim_{x\to 4} (2x-1) = 7$. However, how close to $x_0 = 4 \text{ does } x \text{ have to be so that } y = 2x - 1 \text{ differs from 7 by, say, less than 2 units?}$

We are asked: For what values of x is |y - 7| < 2? To find the answer we first express |y - 7| in terms of x:

$$|y-7| = |(2x-1)-7| = |2x-8|$$
.

The question then becomes: what values of x satisfy the inequality |2x - 8| < 2? To find out, we solve the inequality:

$$|2x - 8| < 2$$

 $-2 < 2x - 8 < 2$
 $6 < 2x < 10$
 $3 < x < 5$
 $-1 < x - 4 < 1$

Keeping x within 1 unit of $x_0 = 4$ will keep y within 2 units of $y_0 = 7$ (Figure 2.15).

FIGURE 2.15 Keeping x within 1 unit of $x_0 = 4$ will keep ν within 2 units of $y_0 = 7$ (Example 1).