The transformation rules applied to the sine function give the **general sine function** or **sinusoid** formula

$$f(x) = A \sin \left[\frac{2\pi}{B} (x - C) \right] + D,$$

where |A| is the amplitude, |B| is the period, C is the horizontal shift, and D is the vertical shift. A graphical interpretation of the various terms is revealing and given below.

EXERCISES 1.3

- 1. On a circle of radius 10 m, how long is an arc that subtends a central angle of (a) $4\pi/5$ radians? (b) 110° ?
- 2. A central angle in a circle of radius 8 is subtended by an arc of length 10π . Find the angle's radian and degree measures.
- 3. You want to make an 80° angle by marking an arc on the perimeter of a 12-in.-diameter disk and drawing lines from the ends of the arc to the disk's center. To the nearest tenth of an inch, how long should the arc be?
- 4. If you roll a 1-m-diameter wheel forward 30 cm over level ground, through what angle will the wheel turn? Answer in radians (to the nearest tenth) and degrees (to the nearest degree).
- 5. Copy and complete the following table of function values. If the function is undefined at a given angle, enter "UND." Do not use a calculator or tables.

$\boldsymbol{\theta}$	$-\pi$	$-2\pi/3$	0	$\pi/2$	$3\pi/4$
$\sin \theta$					
$\cos \theta$					
$\tan \theta$					
$\cot \theta$					
$\sec \theta$					
$\csc \theta$					

6. Copy and complete the following table of function values. If the function is undefined at a given angle, enter "UND." Do not use a calculator or tables.

$$θ$$
 $-3π/2$ $-π/3$ $-π/6$ $π/4$ $5π/6$
 $sin θ$
 $cos θ$
 $tan θ$
 $cot θ$
 $sec θ$
 $csc θ$

In Exercises 7–12, one of $\sin x$, $\cos x$, and $\tan x$ is given. Find the other two if x lies in the specified interval.

7.
$$\sin x = \frac{3}{5}, \quad x \in \left[\frac{\pi}{2}, \pi\right]$$
 8. $\tan x = 2, \quad x \in \left[0, \frac{\pi}{2}\right]$
9. $\cos x = \frac{1}{3}, \quad x \in \left[-\frac{\pi}{2}, 0\right]$ 10. $\cos x = -\frac{5}{13}, \quad x \in \left[\frac{\pi}{2}, \pi\right]$

11.
$$\tan x = \frac{1}{2}$$
, $x \in \left[\pi, \frac{3\pi}{2}\right]$ 12. $\sin x = -\frac{1}{2}$, $x \in \left[\pi, \frac{3\pi}{2}\right]$

Graph the functions in Exercises 13-22. What is the period of each function?

13.
$$\sin 2x$$
 14. $\sin (x/2)$ 15. $\cos \pi x$ 16. $\cos \frac{\pi x}{2}$

17.
$$-\sin \frac{\pi x}{3}$$
 18. $-\cos 2\pi x$

29

n

ne

W.

er

ch

$$20. \sin\left(x+\frac{\pi}{2}\right)$$

$$21. \sin\left(x - \frac{\pi}{4}\right) + 1$$

20.
$$\sin\left(x + \frac{\pi}{2}\right)$$

+ 1 22. $\cos\left(x + \frac{\pi}{4}\right) - 1$

Graph the functions in Exercises 23-26 in the ts-plane (t-axis horizontal, s-axis vertical). What is the period of each function? What symmetries do the graphs have?

23.
$$s = \cot 2t$$

24.
$$s = -\tan \pi t$$

25.
$$s = \sec\left(\frac{\pi t}{2}\right)$$

$$26. \ s = \csc\left(\frac{t}{2}\right)$$

27. a. Graph
$$y = \cos x$$
 and $y = \sec x$ together for $-3\pi/2 \le x \le 3\pi/2$. Comment on the behavior of $\sec x$ in relation to the signs and values of $\cos x$.

b. Graph
$$y = \sin x$$
 and $y = \csc x$ together for $-\pi \le x \le 2\pi$.
Comment on the behavior of $\csc x$ in relation to the signs and values of $\sin x$.

28. Graph
$$y = \tan x$$
 and $y = \cot x$ together for $-7 \le x \le 7$. Comment on the behavior of $\cot x$ in relation to the signs and values of $\tan x$.

29. Graph
$$y = \sin x$$
 and $y = \lfloor \sin x \rfloor$ together. What are the domain and range of $\lfloor \sin x \rfloor$?

30. Graph
$$y = \sin x$$
 and $y = \lceil \sin x \rceil$ together. What are the domain and range of $\lceil \sin x \rceil$?

Use the addition formulas to derive the identities in Exercises 31-36.

$$31. \, \cos\left(x - \frac{\pi}{2}\right) = \sin x$$

31.
$$\cos\left(x - \frac{\pi}{2}\right) = \sin x$$
 32. $\cos\left(x + \frac{\pi}{2}\right) = -\sin x$

33.
$$\sin\left(x + \frac{\pi}{2}\right) = \cos x$$

33.
$$\sin\left(x + \frac{\pi}{2}\right) = \cos x$$
 34. $\sin\left(x - \frac{\pi}{2}\right) = -\cos x$

35.
$$cos(A - B) = cos A cos B + sin A sin B$$
 (Exercise 53 provides a different derivation.)

36.
$$\sin(A - B) = \sin A \cos B - \cos A \sin B$$

37. What happens if you take
$$B = A$$
 in the trigonometric identity $\cos(A - B) = \cos A \cos B + \sin A \sin B$? Does the result agree with something you already know?

38. What happens if you take
$$B=2\pi$$
 in the addition formulas? Do the results agree with something you already know?

In Exercises 39–42, express the given quantity in terms of $\sin x$ and

39.
$$\cos(\pi + x)$$

40.
$$\sin(2\pi - x)$$

41.
$$\sin\left(\frac{3\pi}{2} - x\right)$$
 42. $\cos\left(\frac{3\pi}{2} + x\right)$

42.
$$\cos\left(\frac{3\pi}{2} + x\right)$$

43. Evaluate
$$\sin \frac{7\pi}{12}$$
 as $\sin \left(\frac{\pi}{4} + \frac{\pi}{3}\right)$.

44. Evaluate
$$\cos \frac{11\pi}{12}$$
 as $\cos \left(\frac{\pi}{4} + \frac{2\pi}{3}\right)$.

45. Evaluate
$$\cos \frac{\pi}{12}$$
.

46. Evaluate
$$\sin \frac{5\pi}{12}$$
.

Find the function values in Exercises 47-50

47.
$$\cos^2 \frac{\pi}{8}$$

48.
$$\cos^2 \frac{\pi}{12}$$

49.
$$\sin^2 \frac{\pi}{12}$$

50.
$$\sin^2 \frac{\pi}{8}$$

51. The tangent sum formula The standard formula for the tangent of the sum of two angles is

$$\tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$

Derive the formula.

52. (Continuation of Exercise 51.) Derive a formula for tan(A - B).

53. Apply the law of cosines to the triangle in the accompanying figure to derive the formula for $\cos(A - B)$.

54. a. Apply the formula for $\cos(A - B)$ to the identity $\sin \theta =$ $\cos\left(\frac{\pi}{2} - \theta\right)$ to obtain the addition formula for $\sin(A + B)$.

b. Derive the formula for cos(A + B) by substituting -B for Bin the formula for cos(A - B) from Exercise 35.

55. A triangle has sides a = 2 and b = 3 and angle $C = 60^{\circ}$. Find the length of side c.

56. A triangle has sides a = 2 and b = 3 and angle $C = 40^{\circ}$. Find the length of side c.

57. The law of sines The law of sines says that if a, b, and c are the sides opposite the angles A, B, and C in a triangle, then

$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}.$$

Use the accompanying figures and the identity $\sin(\pi - \theta) =$ $\sin \theta$, if required, to derive the law.

- **58.** A triangle has sides a = 2 and b = 3 and angle $C = 60^{\circ}$ (as in Exercise 55). Find the sine of angle B using the law of sines.
- **59.** A triangle has side c=2 and angles $A=\pi/4$ and $B=\pi/3$. Find the length a of the side opposite A.
- **1** 60. The approximation $\sin x \approx x$ It is often useful to know that, when x is measured in radians, $\sin x \approx x$ for numerically small values of x. In Section 3.10, we will see why the approximation holds. The approximation error is less than 1 in 5000 if |x| < 0.1.
 - **a.** With your grapher in radian mode, graph $y = \sin x$ and y = xtogether in a viewing window about the origin. What do you see happening as x nears the origin?
 - **b.** With your grapher in degree mode, graph $y = \sin x$ and y = x together about the origin again. How is the picture different from the one obtained with radian mode?
 - c. A quick radian mode check Is your calculator in radian mode? Evaluate $\sin x$ at a value of x near the origin, say x = 0.1. If $\sin x \approx x$, the calculator is in radian mode; if not, it isn't. Try it.

For

$$f(x) = A \sin\left(\frac{2\pi}{B}(x-C)\right) + D,$$

identify A, B, C, and D for the sine functions in Exercises 61-64 and sketch their graphs.

61.
$$y = 2\sin(x + \pi) - 1$$
 62. $y = \frac{1}{2}\sin(\pi x - \pi) + \frac{1}{2}$ **63.** $y = -\frac{2}{\pi}\sin(\frac{\pi}{2}t) + \frac{1}{\pi}$ **64.** $y = \frac{L}{2\pi}\sin\frac{2\pi t}{L}$, $L > 0$

63.
$$y = -\frac{2}{\pi}\sin\left(\frac{\pi}{2}t\right) + \frac{1}{\pi}$$
 64. $y = \frac{L}{2\pi}\sin\frac{2\pi t}{L}$, $L > 0$

COMPUTER EXPLORATIONS

In Exercises 65-68, you will explore graphically the general sine

$$f(x) = A \sin\left(\frac{2\pi}{B}(x - C)\right) + \tilde{D}$$

as you change the values of the constants A, B, C, and D. Use a CAS or computer grapher to perform the steps in the exercises.

- **65.** The period B Set the constants A = 3, C = D = 0.
 - a. Plot f(x) for the values $B = 1, 3, 2\pi, 5\pi$ over the interval $-4\pi \le x \le 4\pi$. Describe what happens to the graph of the general sine function as the period increases.
 - b. What happens to the graph for negative values of B? Try it with B = -3 and $B = -2\pi$.
- **66.** The horizontal shift C Set the constants A = 3, B = 6, D = 0.
 - **a.** Plot f(x) for the values C = 0, 1, and 2 over the interval $-4\pi \le x \le 4\pi$. Describe what happens to the graph of the general sine function as C increases through positive values.
 - **b.** What happens to the graph for negative values of C?
 - c. What smallest positive value should be assigned to C so the graph exhibits no horizontal shift? Confirm your answer with a plot.
- 67. The vertical shift D Set the constants A = 3, B = 6, C = 0.
 - **a.** Plot f(x) for the values D = 0, 1, and 3 over the interval $-4\pi \le x \le 4\pi$. Describe what happens to the graph of the general sine function as D increases through positive values.
 - **b.** What happens to the graph for negative values of *D*?
- **68.** The amplitude A Set the constants B = 6, C = D = 0.
 - a. Describe what happens to the graph of the general sine function as A increases through positive values. Confirm your answer by plotting f(x) for the values A = 1, 5, and 9.
 - **b.** What happens to the graph for negative values of A?

Exponential Functions

In this section we take an intuitive view of exponential functions to introduce their basic properties and uses. In Chapter 5 we give a more rigorous treatment based on important calculus ideas and results.

Exponential Behavior

When a positive quantity P doubles, it increases by a factor of 2 and the quantity becomes 2P. If it doubles again, it becomes $2(2P) = 2^2P$, and a third doubling gives $2(2^2P) = 2^3P$. Continuing to double in this fashion leads us to the consideration of the function $f(x) = 2^x$. We call this an exponential function because the variable x appears in the