

LaByRInth

An Improved Algorithm
for Low-Coverage
Biallelic Genetic
Imputation

Jason Vander Woude

Outline

1. Project History
2. Genetics
3. Imputation
 - a. LB-Impute
 - b. LaByRInth
 - i. Modeling
4. Future Work

Kansas State Agronomy

1. Correlate physical features with genetics in wheat and wheatgrass
 - a. Plant height
 - b. Number of seeds per head
2. Fit equations to data to model distributions
3. LaByRInth imputation

Chromosomes

1. Chromosomes encode genetic information
2. Chromosome is a sequence of bonded bases
 - a. A/T and C/G
 - b. 5' and 3'
 - c. 5'ATGACACTGTGACA3' uniquely identifies

Heterozygous and Homozygous

1. Wheat has 42 chromosomes
2. Chromosomes come in pairs (homologs)
 - a. Homologs serve same genetic purpose
 - b. Base pairs can be completely different
 - c. Each parent contributes one chromosome to each homologous pair

Genetic Imputation

1. Expensive to collect all genetic information
2. Patterns are expected based on known breeding
3. Imputation is used to fill in the gaps
 - a. Build a mathematical model of the expected process
 - b. Use known genetic sites to infer unknown sites

How well does
imputation
actually work?

Genetics of a Biallelic Homologous Chromosome Pair

Reference base in both homologs

Alternate base in both homologs

1 homolog with Ref. and 1 with Alt.

524 positions in the chromosomes

100 different plants

Sampled

LB-Impute

Genetics vs LB-Impute

LB-Impute

1. Leaves large sections of the chromosome un-imputed
2. Designed for F2 populations

F2 vs F5

LaByRInth

1. Low-coverage Biallelic R-package Imputation
2. Initially supposed to be re-write of LB-Impute (Java to R)
3. Found many areas for improvement
 - a. Project took unexpected direction
 - b. A few weeks became more than a year
4. Open source

Modeling Strategies

1. Option 1: Use a model that ignores some biology (varying levels)
 - Often able to exactly “solve” the model

Modeling Strategies

1. Option 1: Use a model that ignores some biology (varying levels)
 - Often able to exactly “solve” the model
2. Option 2: Use a model that accurately captures biology
 - May not be able to “solve” the model exactly

Modeling Strategies

1. Option 1: Use a model that ignores some biology (varying levels)
 - Often able to exactly “solve” the model
2. Option 2: Use a model that accurately captures biology
 - May not be able to “solve” the model exactly
3. An analogy: find the area of a circle
 - Use a polygon to approximate the area
 - i. Area of polygon may be able to be exactly computed
 - Use formula πr^2
 - i. π cannot be represented exactly

LaByRInth Strategy

1. Have not found a good way to do option 2 (capture biology)
2. Two different ideas for option 1 (exact solution to model)
 - a. Extend LB-Impute strategy to other generations
 - i. Assumes we can segment the chromosome
 - b. New method based on different biological assumptions
 - i. Assume limited genetic change during reproduction

How well does
LaByRInth
work?

Genetics

LaByRInth

Genetics vs LaByRInth

This Summer

1. Implement and test both concept methods
 - a. Real data
 - b. Simulated data
2. Write and submit paper
3. Package code and release

Thanks to my advisors,

Dr. Nathan Tintle (Dordt)

Dr. Jesse Poland (Kansas State)

Dr. Mike Janssen (Dordt)

Questions?

Fitting Gaussian Curves

