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Background of Our Research

I 1992 On the Ideal Theory of Graphs
I They show that a graph G is bipartite (contains only even

cycles) if and only if its corresponding edge ideal satisfies
I(n) = In for all n ≥ 1.

I 2004 Symbolic Powers of Edge Ideals
I I(n+r) ⊇ In+r + Ir−1 · 〈x1x2 · · ·x2n+1〉 for all r ≥ 1
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An Introduction to Abstract Algebra and Graph Theory

Graphs:

I A collection of vertices and edges connecting those vertices

Cycles:
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Monomials

Polynomials

x2 + 5x + 6 2x4 + 7x2 + 3x + 1

Multivariable Polynomials
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Ideals

An ideal is a set with special additive and multiplicative
properties.

Example:

I The set of all even numbers (all numbers divisible by 2) is
an ideal of the integers, and we’ll call this ideal E.

I The sum of any two even numbers is an even number.
I Any integer times an even number is an even number.

I E2 is the set of all numbers divisible by 22 = 4.

I E3 is the set of all numbers divisible by 23 = 8.

Ideals can also be generated from graphs.
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Research Goals

I One of the research goals was to prove a pair of conjectures
stated in the 2004 paper regarding odd cycles of length
2n + 1.

I I(t) = It for 1 ≤ t ≤ n
I I(n+1) = In+1 + (x1x2 · · ·x2n+1)

I We have been able to prove both of these conjectures,
which has opened up the door for further research for the
rest of the summer.
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So, what did we actually do?

I Explore background information

I Collect data and explore patterns using Macaulay2

I Formulate and test conjectures until one seems adequate
I I(t) = It + IS〈t〉

I Prove the conjecture
I When is something considered to be true in mathematics?
I Often requires splitting the conjecture into sub-conjectures

and proving them individually or splitting them further
I Also requires considerable amounts of backtracking

I Write a formal proof in a way that is easy to comprehend
I Shockingly difficult
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Graphing Monomials

We graphically represent the monomials by reducing each pair
of consecutive vertices to an edge so that we get as many
edges as we can. Consider the monomial x21x

3
2x3x4x5.
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Graphing Monomials

However, each monomial does not necessarily have to perfectly
reduce, which creates ancillary vertices. Consider the
monomial x21x

3
2x3x4x

2
5.
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Graphing Monomials

Another problem we encountered was that each monomial does
not necessarily correspond to a unique graph.
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Graphing Monomials

We had to be concerned with an infinite number of possible
graphs of varying sizes, so we wanted to understand what
graphs can and cannot look like.
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Assuming one of each ancillary.
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Graphing Monomials
But even after turning those two ancillaries into an edge, it is
still not good enough!

Assuming one of each ancillary.
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Theorem (Kamp-Vander Woude)

Let G be an odd cycle of size 2n + 1, I be its edge ideal, and V ′

denote a minimal vertex cover. Then

I(t) = It + ({xα|deg(xα) < 2t and ∀V ′ ⊆ V (G), wV ′(xα) ≥ t})
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