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Abstract.
growth in colonies

is shown how (1) 'changes in the egg laying rate and adult mortality,

A deterministic mathematical model is constructed to describe the population
of the grain beetle, Tribolium confusum, under laboratory conditions. It

(2) the destruction of

some eggs by larvae as well as by adults, and (3) the destruction of some small larvae by
larvae and adults, lead to a theoretical population growth which agrees closely with the labora-

tory experiments.

INTRODUCTION

A previous mathematical model describing the
behavior of laboratory populations of the grain
beetle, Tribolium confusum, has shown how the,
main features of the population growth can be
explained by the tendency of adults to destroy eggs
(Taylor 1965). Although there were some errors,
as indicated below, in the numerical values used
in that model, the general conclusions remain un-
altered.

In the present paper an alternative description
of the model is given in a form more suitable for
mechanical computation. The program is devised
so that the computer itself mimics the population.
Hence, corresponding to a given instant, it repro-
duces simultaneously the numbers present in each
of the various forms, adults, eggs, larvae, and
pupae. In a model of this type, improvements and
extensions can be incorporated easily, and it is
shown how some of these allow it to describe fea-
tures of the population history more closely than
the previous model.

The author wishes to acknowledge the assistance
of Mrs. G. Prater of the University of New Eng-
land Computing Laboratory, and of J. Le Gay
Brereton on whose experiments the theory is based.

TuE FUNDAMENTAL EQUATIONS

Let the subscripts 0, 1, 2, 3, and 4 refer respec-
tively to the adults, eggs, small larvae, large lar-
vae, and pupae. Then

N;(t) =number in jth stage at time ¢,
AN; (%, t) =number in jth stage aged between
¢ — At and 7 at time ¢,
a; = age span in jth stage,
b — egg laying rate per adult,
¢ = mortality rate of adults per adult,
aj(t) = probability of survival of jth stage
from age 7 to © 4 At.

The method consists in finding the populations
at time £ -+ At in terms of the populations at time #.
For the adults, the number at time ¢+ Af is

equal to the number at time £, less those dying in
time A¢, plus those hatching from pupae which
reach the full age span a4 in this time. Hence
(1) No (t + Af) = No (t) — ¢ No (f) At
+ AN (a4, B).

For the eggs, the number at time ¢ 4 At in the
youngest age range of A¢ will be the number laid
in time Af, reduced by a factor between 1 and
@, (0) due to losses in this time. If At is small,
then, approximately,
(2) AN, (At, t + At) = b No (t) At X e (0).

Also, the number of eggs at time ¢ -+ At in each
subsequent age range of At is the number in the
corresponding previous age range at time f, re-
duced by the survival factor. Hence,

(3) AN; (v + At, t + At) = AN (1, 8) X a1 (1)

for v = At to a; — At. So, from (2) and (3), the
total number of eggs at time ¢ ++ A¢ is

(4) N1 (t + At) = bNo (t) At X o (0)

ay— ¢
+ X AN:i(1,t) X a (7).

c=At
For the small larvae, similarly,
(5) AN, (At, t + At) = ANy (a1, t) X a2 (0)
and
(6) AN, (x + At, t + At) = AN, (7, 1) X a2 (7)
for 1 = At to a; — At. So
(7) Ny (t + At) = ANy (a5, 1) X 22 (0)

Go— t
+ Z AN2 ("L', t) X [«£) ('C).

«=At
For the large larvae,
(8) AN;; (At, t + At) = ANz (az, t) X a3 (0)

and
(9) AN; (v + At, t + Af) = AN; (7, t) X a5 (1)
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for v = At to a3 — At. So

(10) N3 (t + At) = AN, (as, £) X a5 (0)
as—
+ Y AN; (7,8 X o3 (1).
c=At

For the pupae,
(11) AN, (At, t + At) = AN; (as, ) X as (0)

and
(12) AN4 (x + At, t + At) = ANy (r,8) X o (1)
for Tt = At to as — At. So

(13) Nu (¢ + At) = AN (85, D) X o ()
as— AT
+ Y ANi(t,8) X as (7):
c=At

If At is not very small, some refinements must
be included in these formulae. For example, the
summations must be adjusted to give more accu-
rate expressions for approximate integration. One
way of doing this is shown in the next section
It is a simple matter to include these adjustments
in the program, and to include also possible de-
pendence of b and ¢ on the numbers present in the
population and the time.

Some assumptions must now be made concern-
ing the a;.

To determine the oy, it will be assumed that the
main factor affecting the mortality of eggs is the
cannibalism by adults and large larvae.

Let .

ko = proportion of eggs destroyed by an adult
in unit time,

ks = proportion of eggs destroyed by a large
larva in unit time.

In general, these quantities will be functions of
the population numbers. The subscript denotes
the stage which does the killing.

In the time At previous to £, let v be the fraction
of the medium explored by the cannibals, and
hence the fraction of the eggs destroyed. Let dv
be the additional fraction lost in the further infi-
nitesimal time d¢. This will be a fraction (koNo(#)
+ k3N3(t))dt of the number of eggs remaining.
So

dl) = (1 —_ ’U) (koNo + kaNa) dt.

Hence
1—v= exp{—fﬁ _ At(k0N0+k3N3)dt}

This is the fraction of eggs surviving through the
time A¢. If At is small, then

(14) & (2) = exp § ko No () + ks Ny 0] At}
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Thus @;(t) is a function of ¢. Adjustments can
be made to give a more accurate formula. Usu-
ally, the term (koNo + k3N3) will be fairly large
(of the order of unity), and so variations of N,
and N; during the time At should be taken into
account.

To determine a,, it will be assumed that de-
struction by adults and large larvae is also the
main cause of mortality of the small larvae.

Let

lo = proportion of small larvae destroyed by an
adult in unit time,

I3 = proportion of small larvae destroyed by a
large larva in unit time.

Then, as before,
(15) az (v) = exp §—(lo No® + LN () At}

It will be assumed that the deaths of large larvae
and pupae are accidental, and so the probability
of survival remains the same throughout the re-
spective lifetimes. The probability of survival of
these forms is usually so much greater than that
of the eggs and small larvae that comparatively
little error is introduced by this assumption.

Let

ps = probability of survival of a large larva,
P+ = probability of survival of a pupa.

Then
(16) a; (x) = (p) D% forj =3, 4.

The equations (14), (15), and (16) take into
account the main factors affecting the populations
of the immature forms. Substituting from these
into the equations (1) to (13), the properties of
the population at time t -+ A¢ can be determined
from the properties at time ¢, and so the history
of the population can be traced.

With the present assumptions, each ;(7) is in-
dependent of the age 7, and so could be written
simply as a;.

The additional complications introduced here
make mathematical expressions for the steady state
populations more difficult to obtain than in the
previous model. However, the actual values can
be found easily by allowing the program to run
for a sufficient time on the computer.

ADJUSTMENTS TO THE FORMULAE

To accomplish the calculation reasonably quickly
so that computer time 11 not wasted, the interval
At must not be too small. It is then necessary
to replace the summations in the formulae (4),
(7), (10), and (13) by more accurate expressions
for numerical integration. The trapezoidal rule,
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although less accurate than most of the usual de-
vices, requires only a small alteration to the equa-
tions. The additional terms

1b N, (t) At — 3 AN, (a — At,t) X o1 (a1 — Af)

must be included on the tight hand side of (4),
and the equations (7), (10), and (13) treated
similarly. When the egg number becomes large,
there will be a strong, approximately exponential
decrease in number with age, due to the relatively
small probability of survival of eggs. The trape-
zoidal rule will then leave noticeable errors, par-
ticularly in the initial stages of the egg population,
and so a further adjustment must be made. A
similar correction might be necessary also in the
case of small larvae. Amended formulae replac-
ing (4), (7), (10), and (13) are, for the case
where the ; are independent of age,

(17) Ny (t + At) = b No (8) At

a; — t
+ Z ANl (’L‘, t) o

c=At
+H1-30 - W)

x%b No (f) At — oy ANy (@ — A, t)g'

(18) Nz (t + At) = AN1 (al, t) o2
Qg —
+ Z ANz (‘L', t) 6 ag
c=At

+3 {1 -3 - @)
X%ANl (al, t) — Q2 ANz (az - At, t)%}
(19) N3 (t + At) = ANz (aa, t) 04

CL3—-At
+ X AN; (1, t) a3

c=At
+ %{ANZ (as, ) — a3 AN (as — AL, t)}’

(20) Ny (t + At) = AN; (a3, ) o
as— AL
+ Y ANi(r,D
t=At

+ HAN; (a5, ) — @ AN (a5 — A, o},

The total number of larvae is given by adding
the results of (18) and (19).

COMPARISON WITH EXPERIMENT

The experimental population consisted of repli-
cates in 40 g of medium at 29°C and 70% relative
humidity (Brereton 1962). An example of a
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theoretical population and its comparison with this
experimental one has been given in a previous
paper (Taylor 1965). Unfortunately, there were
errors in some of the numerical values used there.
The average mortality rate of adults was taken
to be 0.02 per adult per day instead of 0.002.
Also, the resultant probability of survival of larvae
was taken to be 0.62, the value given by Brereton
for survival from the small larval stage only. The
losses in the small larval stage, which lasts only
for about 3 days of a total 16, were incorrectly
assumed to be negligible. These errors do not
affect the conclusion reached in that paper, that
the destruction of eggs by adults causes the popu-
lation to tend to a steady state after an initial over-
shooting. However, there are some features not
explained by the simple theoretical investigation.

The theoretical approach of the present paper,
besides being suitable for electronic computation,
readily allows the simple model to be extended.
The inclusion in the program of cannibalism of
eggs and small larvae by large larvae and of small
larvae by adults are examples of this, Dependence
of the egg laying rate on adult numbers and of
the mortality rate on time also can be incorporated.
In Figure 1, the numerical values used differing
from those in the previous paper were determined
by the following considerations.

(1) Reference to the previous results shows that

the initial growth of the experimental egg popu-

lation is about three-times as fast as that given by
the theoretical curve. In the present case it was
assumed that the egg laying rate started at 3.0
per adult per day when the number of adults was
18, and decreased with increase in population to
1.1 when the number reached 30. Table VII of
Brereton’s paper (1962) also gives some indica-
tion of a decrease in egg laying rate with increase
in adult numbers. The final value of 1.1 agrees
more closely with the results shown in that table
than the 1.0 previously taken. Park, Mertz, and
Petrusewicz (1961) describe variations in fecun-
dity with age. They also note differences in lon-
gevity of male and female adults which will altef
the sex-ratio, and hence the average egg laying
rate. Since the cannibalism of males differs from
that of females, it will also affect the egg eating
rate. These effects have been ignored in the
present calculations. The cannibalism rate has
been taken as constant at 0.0011 of the total eggs
per adult per day, in agreement with Brereton’s
Table VIL

(2) If the destruction of eggs by adults is the
only type of cannibalism taken into account, the
initial overshooting in the adult and larval popu-
lations is too great. Preliminary trials on the
new model showed that a smoothing effect of the
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Time - days
Fic. 1. Comparison of the theoretical and experimental

population growths. The solid lines show the theoretical
and the dotted lines the experimental growths.

required order could be obtained by assuming a
small amount of destruction of eggs by larvae. It
is known in fact that all moving forms attack all
inert forms. . For the curves shown in Figure 1,
each large larva was assumed to destroy 0.0003 of
the eggs per day. There is no direct experimental
evidence for this value. It was chosen because it
produces the desired effect in the growth curves.

(3) The mortality of small larvae could be due
to eating or some other interference by large lar-
vae and adults. It is known that large larvae do
attack small larvae. However, the experimental
growth curve for the larvae could not be explained
by this effect alone. The theoretical curve con-
tained a distortion which was removed by assum-
ing that adults also attack small larvae. The value
chosen for the rate of destruction of small larvae
by large larvae and by adults was taken to be
0.0003 in each case. Again, there is no direct
evidence for this figure except for the effect it
produces on the curves.

Experiments by Park, Mertz, Grodzinski, and
Prus (1965) indicate that the destruction of small
larvae by large larvae is rather less than this, but
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that there is some loss due to accident. Taking
this into account in the calculations, there is little
alteration in the theoretical curves, since acci-
dental loss has an effect very similar to destruction
by large larvae, provided the losses are not ex-
cessive. Accidental losses can be included in the
calculations if the right hand side of the equation
(15) is multiplied by an expression like that in
(16).

(4) Since the natural life span of an adult is
about 200 days, it is expected that the mortality
rate will approach 0.005 per adult per day after a
sufficient time has elapsed. Hence, the mortality
rate of adults was taken to be 0.002 for the first
100 days, increasing to 0.005 at about 200 days
after the commencement. The experimental fig-
ures show a high mortality rate in the very early
stages, but this was neglected since the total num-
ber of adults then is small. A drop in mortality
below the figure of 0.002 for a considerable period
also was ignored.

From the above observations, the present model
uses the following values: ¢; = 6 days; az =3
days; as = 13 days; as = 6 days; b = 3.0 eggs per
adult per day when N, = 18, decreasing to 1.1
when No==30; ¢ = 0.002 of the adults per day,
increasing to 0.005 during the period 100-200 days ;
ko = 0.0011 of the total eggs per adult per day;
ks = 0.0003 of the total eggs per large larva per
day; lo = 0.0003 of the small larvae per adult per
day ; I3 = 0.0003 of the small larvae per large larva
per day; ps = 0.62; p, = 0.89.

The initial populations chosen were those of the
experiments, N,(0) =18, N,;(0) =23, N2(0)
=0, N3(0) =9, Ns(0) = 1.

From the similarity between the theoretical and
experimental curves, it appears that the destruc-
tion of eggs by larvae and the destruction of small
larvae by large larvae and by adults are significant
factors in determining the history of the popula-
tions.

The number of eggs in the model varies much
more smoothly than in the experimental popula-
tion, but follows roughly the mean growth. In
trying out various numerical values, it was found
that fluctuations could be induced easily by small
increases in the egg cannibalism of larvae, and so
differences in the theoretical and experimental egg
populations are probably not significant. These
fluctuations did not cause much effect on the adult
population growth in the model. In fact, it is
shown in the next section that the other popula-
tions are relatively stable even for the complete
removal of eggs at a given instant.

Discrepancies so far not resolved in the theo-
retical curves are the noticeably high adult num-
bers, and the small decrease in the time. scale,
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Eggs
1000 ¢ r\
| Adults
600}
- ]
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220 260 300 340 380
Time - days
Fic. 2. The effect of the removal of eggs. All eggs

were removed at the time 300 days.

particularly in the egg population in the region
where the major growth occurs.

RemovaL oF EaGGs

An example is given here of the way in which
the model can be extended without difficulty to
deal with certain special cases.

ILSE WALKER
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In one of Brereton’s experiments, all the eggs
were removed from some of the replicates on one
occasion. Details are not given in his paper
(1962), but an examination of the original figures
shows that this had little effect on the population
history. Figure 2 demonstrates the effect in the
theoretical model of putting all the AN; equal to
zero at the instant + = 300 days. The populations
of the various components soon return to their
steady states, in agreement with Brereton’s obser-
vations.
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Abstract. Viability and oviposition of the parasitic wasp Nasonia vitripennis on its host
Phaenicia sericata at various parasite-host densities were analyzed. As the parasite density
becomes excessive, an increasing portion of the progeny is reduced. These density-dependent

reduction mechanisms are: retention of eggs i
death and decomposition of superparasitized host

food shortage within the host leading to par

morphosis ; reduced longevity and fecundity o

f a sufficient number of hosts is not available;
pupae resulting in death of the parasite larvae;
asite mortality shortly before and during meta-
f viable female offspring from superparasitized

hosts and a decreasing portion of female progeny as the parasite number on a given host supply

increases.
parasite female or per host pupa.

ovipositing females: the more dense the oviposit
Two categories of density-dependent regula

and pathological mechanisms.

This change in sex ratio is relatively independent of the number of eggs laid per
Tt is mainly determined by the number of simultaneously
ing females, the less fertilized eggs they produce.
tion mechanisms are distinguished: behavioural
The significance of the two categories for the existence of a

theoretical population equilibrium on the one hand and for a real equilibrium on the other hand

is discussed.

INTRODUCTION

In order to reach an understanding of the den-
sity fluctuations in a host-parasite population the
density-dependent biological interactions between
the two organisms have to be known. Density-

1 This study was supported by research grants of the

National Science Foundation (Environmental Biology
GB 549 and GB 4567).

dependent fecundity and viability factors may be—
according to the definition of Nicholson (1933)—
mechanisms of population regulation sensu stricto.

According to the mathematical population model
of Pimentel (1961) the genetic nature of the inter-
acting organisms would be continuously altered by
a “feed back” mechanism, which would ultimately
lead to an equilibrium between host and parasite



