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Abstract.

A deterministic mathematical model is constructed to describe the population
growth in colonies of the grain beetle, Tribolium confusum, under laboratory conditions.

It is

shown how the eating of eggs by adults can account for the main features of the observed
population growth, in particular the occurrence of a maximum in the adult numbers and the

tendency then to reach a steady state.

INTRODUCTION

The aim of this paper is to construct a deter-
ministic mathematical model describing the popu-
lation growth in colonies of the grain beetle, T7i-
bolium confusum, under laboratory conditions.
The work is based on experiments reported by
J. Le Gay Brereton (1962), in which the colonies
are started with small populations, are self-con-
tained so that there is no migration between them,
and are provided with an unrestricted food supply.
By substituting in the model the values estimated
by Brereton of the various biological constants,
theoretical graphs of the population growth are
obtained which can be compared with those given
by the actual experiments.

Certain hypotheses concerning the behavior of
the insects have been put forward to account for
features in the growth of the experimental popu-
lations. By constructing a mathematical model
based on these hypotheses and then comparing the
model with the experimental results, it can be
tested whether such behavior would, in fact, affect
the population growth in the required manner.

Tue Tribolium MODEL

Let
N (t) = number of adults at time ¢,
n1(71, t) = number of eggs per unit age range of
age 71, at time ¢,
ns (%2, t) = number of larvae per unit age range of
age Tq, at time ¢,
ns(7s, t) = number of pupae per unit age range of

age T3, at time ¢,

a1, az, a3 = the respective age spans of eggs, lar-
vae, and pupae,

by = egg laying rate of an adult (the aver-
age for all adults),
¢ = mortality rate of an adult,

p2 = probability of survival of the larvae,
ps = probability of survival of the pupae.

(If necessary, the theory could be extended to in-
clude further stages, for example, immature
adults.)

Then, since the rate of increase of adults is
equal to the rate at which they are emerging from
the pupae less the death rate,

(1) dN(t)/dt = ns(as, t) — cN(2).

The rate at which eggs are entering the population
is

(2) (0, 1) = biN(0).
Since a fraction ps of pupae survive the full age
span ag and a fraction ps of larvae survive the
time as,
(3) nalas, t) = psna(0, t—as) = pyna(as, t—as)
= pspan2(0, t—az—az) = pspar(ay, t—az—as).
To obtain an equation in N only, it is necessary
to have, in addition to these, a relation between
ny(ay, t) and n1(0, t). That is, the survival char-
acteristics of the eggs must be determined. From
various experiments, it has been concluded by
Park (1933), Stanley (1942), Boyce (1946),
Rich (1956), Brereton (1962), and others, that
eggs are destroyed by adults.
Suppose that, in time 7, a fraction v of the
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medium is explored and the eggs in it eaten. Then,

of the eggs which were laid at the time ¢ — 1,

only a fraction 1 — v will remain at time ¢. i.e.,

nl(le t)

4) 1—v =0, L = 1)

Let &, be the proportion of eggs destroyed by an

adult per unit time, or, alternatively, the medium

exploring rate. Then the additional fraction ex-

plored in time d¢ will depend on the amount so

far unexplored 1 — v, the number N, the rate of

exploring per member k,, and the time d¢t. So
dv = (1 — v)Nkodt,

giving

t
(5) 1~v=exp3~kof
t—‘rl

From (4) and (5),
(6) ??,1(7'1, t)

t
=n (0,t — 7)) exp { — k"f Ndt s
t—Tl

In particular,

Ndt s

(7) mas, t — as — a»)
t+a;—a
= n(0,t — a)exp { — kof Ndt ¢,
t—a
where
(8) a = a + a + as.

After using (7) and (2), (3) gives
(9) ns (as, 1)

= bipepsN(t —a)exp g — k"f

Put

(10) b = b1p2p3

in (9); then by substituting in (1), the equation
giving N (¢), the number of adults at time ¢, is
obtained. It is

N
an [2 + cN]t

_ [bNexpg —k, fﬁ " a}ths]t .

where the subscript outside the square brackets
denotes the time at which the expression inside
the brackets is to be evaluated.

A feature of this equation, different from many
cases of population growth, is that the population
is allowed to reach a steady value, N,. An expres-
sion for N, is obtained by substituting the con-
stant N, in (11). The result is
(12) No= 1 1050,

koa; c
The fact that such an N, exists arises essentially
from the nonlinear nature of the equation (11) in

{+a—a
Ndt ;.

t—a
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N, caused by the linking of egg survival with the
adult numbers.

If the experiments proceed only for a time rather
less than the natural life span of the adults (about
200 days), the simple mortality term ¢ N(t) is
sufficiently accurate, since death will be due mainly
to accidental causes. For longer experiments, a
mortality term corresponding to natural as well
as accidental causes must also be included. This
would cause long term fluctuations to appear which
would gradually diminish until a steady state with
a population less than N, is ultimately reached.
The experiments of Park (1954) indicate this
kind of behavior.

A result identical with (12) has been obtained
by Neyman, Park, and Scott (1956) using a sim-
plified but partly indeterministic model in which
the unit of time is taken as one generation and
there are only two stages, an inactive and an active.
Their formula for the number of adults for which
there is no expectation of an increase or decrease
in succeeding generations is

1 _
e = — log v
uT

where . is a constant characterizing the “voracity,”
7 is the time taken for an egg to hatch, and v the
average number of eggs laid by an adult, which
in the present notation, is equal to b times the
lifetime of the adult, or b/c as long as mortality
is due only to accidental causes.

The equation (11) shows that the adult popu-
lation at time ¢ depends on its value in the interval
{ —a tot4 a; — a, and in general a solution can
be found only by numerical methods. However,
some simple cases will now be discussed.

Suppose N remains approximately constant and
equal to X in the time interval t= —a to O.
Then during the next generation, from ¢ =0 to
a — ay, the equation (11) for the population be-
comes

dN

G+ CN = bXe koXar,

The solution to this satisfying the condition that
N=Xatt=0is

I (1 — e_“)l,
\ ¢ f

or, using (12),
(13) N
X { e—ct n (1 _ e——ct) ekoXal(Nc — X)}.
Suppose X < N,. Then, from (13), N> X.
Similarly, if X > N,, (13) shows that N < X.
This agrees with a result of Neyman, Park, and
Scott (1956) who show that, if a generation has an
average number, say X', of adults and if X’ < N,,
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then the expected number in the next generation
will be greater than X'. Also, if X' > N, the
expected number in the next generation will be
less than X’. However, the equation (13) which
gives this result applies only to the case where the
initial population has a steady value. A case will
now be considered in which there is some varia-
tion in the population of the initial generation.

et N be approximately equal to X in the inter-
val t = —a to ay — a, but equal to V at t=0
Then, by (13), the rate of change of the popula-
tion at t =0 is

dN — oY 4 bXe™ k,Xa;
dt
or, using (12),
ayy W x e Ne= 2y

dt | f
This equation can be used to give a good numeri-
cal approximation to the solution of (11).
When X < N, dN/dt is positive only when

V < Nekoar(Ne— X)) Hence it would be a sim-

ple matter to construct a population growth curve
for which the average in one generation is X but
in the succeeding generation is less than X. Simi-
larly, for the case where X > N, the succeeding
population could be greater than X. These con-
clusions will be confirmed later when the numeri-
cal solution of (11) for an actual population is
discussed.

[<cc PoruLATION

Substituting from the equation (2) in (6),
(15) 77,1(‘r1y t)

¢
= bN({t — 7)exp 3 - k,,f thi.

t - T
With the equation (11) solved for N(t), this
gives the age distribution of the egg population at
any instant.

When the adult population reaches the steady
state N, the age distribution of the egg population
hecomes steady, being given by
(16) Bue(r) = biNe RN
The number of eggs present at time ¢ is

ay
(17) le(t) = fo nl(n, t)dTl.

Substituting from (15), and integrating by parts,
this reduces to

bl t 1
18) Ni(t) = 3~ [1 - 3 — k, ths .
( k, exp ft Ve J

As the adult population tends to its steady state,
the total egg population rapidly approaches a

REPORTS

Ecology, Vol. 46, No. 3

constant value which can be determined from (16)
or (18), and (12),

11)1 C
9 N, = = — 2\
(1 ) A te ko (1 )

An experiment which proves conclusively that
the eggs are subject to severe losses consists in
removing them from the destructive environment
and recording the number hatching each day after
removal. In the experiments by Brereton (1962)
the adult population is kept at a steady value and
all immature forms except eggs are removed. If
the experiment begins at t = 0, then

0 fort <0,
N =
X, a constant for t > 0.
The equations appropriate to this experiment are
(2) and (6). When conditions become steady
(after time t = a, for (6)) these give, respectively,
n (0, ) = b X,
n (Tl, t) =mn (O,t - Tl) e— kOXTI .
Hence

- l('uXTl

)

(20) nl(Tl, t) = b1Xe
and the total egg population is

a1 o
(21) X, = f wa(rs, 0) dm =§}J(1—e AoXao)_
0 o

Equation (19) is the special case of (21) in which
A = c

The number #;(x;) hatching during the day
from a; — 71 to @&y — ©; 4+ 1 after removal from the
influence of adults is the number whose ages lie
between t; and t; — 1; i.e., from (20),

@ m = [

Tl—].

— ;l_e— ]\'OXT1 (ekoX_ 1)

nl(Tl, t)dt

For the simplified model at present under in-
vestigation, these same results would hold even if
the other immature forms were not removed, pro-
vided X were maintained constant.

PoPULATIONS OF THE INTERMEDIATE FORMS

So far, the only properties of the larvae and
pupae which have been required are the age spans
and the final survival rates. If a more detailed
investigation of these populations is required, func-
tions specifying the survival rates to any age must
be introduced. Let

q2(r2) = probability of survivalof the larvac to ager,,
3 (r3) = probability of survival of the pupac to agers.
In particular,

(23) (12((12) = Do,
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and
(24) gs(as) = pa.

The age distributions can be written, respec-
tively,

na(r, 1) = na(0, t — 72). qa(rs),
ns(rs, 1) = n3(0, t — 73). qs(rs),
or, by (3) and (15),
(25) n2(T2, t) = b[QQ(Tz)N(t — T2 — (11)

t — 7o
X exp —k"f

t—TQ—a[

th€ ,

(26) n3<T3, t) = b1p2q:,(T3). N(t — T3 — Q3 —(ll)

t — 73 — a
X exp 3 - k"f no thé.

t—7m3 —a —

The total numbers of larvae and pupae are then,
respectively,

@7) No (1) = f 32 na(r, 1) dr,

az
(28) Yo = | 0

When the adult population reaches its steady
state, the age distributions of the larvae and pupae
are, from (25) and (26), using (10) and (12),
(29) n2e(12) = cNega(rs)/paps,

(30) Nse(73) = eNeqs(rs)/ps.
The total numbers are given by integration, as
before.

With the assumption that there are no losses
during changes from one form to the next, and
that the probability of loss per unit time remains
constant for a given form,

(31) qa(7y) = paTe/Q2

(32) qs(13) = ps7s/Gs

For this case the total numbers in the steady state
can be calculated readily. They are

(33) Noe = caeN(p: — 1)/psps log ps,

(34) Nz = casNs(ps — 1)/ps log ps.

Occasionally in experimental work, the numbers
up to a certain age are required. For example,
the number of “small larvae” are counted in some
experiments. The corresponding formulae are
found by integrating (25) and (26) over the re-
quired range.

The number of new adults entering the adult
population in unit time is sometimes counted. The
expression for this at the time ¢ is simply the right
hand side of (11), i.e., the birth term

t+ a
(35) [I)Nexp 3 -k, ft ‘ ths ]t
—a
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The number entering during a finite period of time
is given by integrating this over the appropriate
range.

CoMPARISON WITH EX PERIMENT

Several mathematical models describing the
population growth of Triboliun have al 2ady been
devised. For example, there is the sinlified in-
deterministic model of Neyman, Park, and Scott
(1956) already mentioned. An elaborate model
in which very many details are taken into con-
sideration is due to Stanley (1933). An advan-
tage of the present model is its continuity on the
time scale, so that it is not necessarily linked to
the generation as a time unit. Although the
equation (11) in N(¢) depends on values of N
during the previous generation in a way which
makes analytical solution extremely complicated,
it has a form for which approximate numerical
solution is quite simple and straightforward.

If At is the time unit, then from (11), the ap-
proximate change in N during this time is

(36) AN = — [N} At

t + ay 1
+ DN exp { — k f Ndt At
t _]t —a

Hence AN can be found if the constants are given
and N is known at the time ¢ and during the in-
terval t —a to t-+4 a; —a. The approximate
value of N at the time ¢ 4 At is then known. The
change in V during the next interval of time At can
then be found if, in addition, N is known at the
time - At + a; —a. With this process, the
whole history of the population can be traced if
it is given during an initial time interval of length
a. After we have found N (¢), the population
growth of the immature forms can be determined.

Another way of specifying initial conditions
would be by giving the numbers and ages of the
various forms present at an initial instant. By
tracing their growth using the formulae and
methods of the previous sections, the changes in
N during the subsequent time interval a can be
determined, and the calculation then carried on
as before.

To obtain the simplest and smoothest solution,
the initial population would need to be as small as
possible. The best experimental population for
comparison with the theory therefore would be
one starting from, say, three or four adults.

For the experiments described by DBrereton
(1962) the initial population was selected as fol-
lows: a colony which had reached a steady state
at about 500 to 600 adults was taken, and 18
adults chosen from it, together with immature
forms in proportion to their numbers in the steady
state. A rather large initial population such as
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this produces oscillations in the population growth
which tend to mask effects of more fundamental
significance. Moreover, the larger the initial popu-
lation, the more care is required in calculating
N (t) during the initial period of length a. How-
ever, in order to compare the theory with experi-
ment, calculations were made for this case.

In the continuing experiments described by
Brereton (1962), the colonies were grown in an
environment containing 40 g of flour at a tempera-
ture of 29°C and a relative humidity of 75%. In
these circumstances, the values he finds for the
various constants are as given in the following
paragraphs.

The time a; in the egg stage is about 5.5 days,
the life span a2 of the larvae is 16.5 days, and the
life span a3 of the pupae is 5.7 days. Hence, al-
lowing time for adults to reach maturity, the length
a of the generation in the theoretical model can
be taken to be about 30 days.

From the similarity in the forms of the graphs
of the intermediate stages, and also from statistical
analysis, it is generally found that the probability
p2 of larvae becoming pupae and the probability
p2 ps of them finally becoming adults are inde-
pendent of the density. Therefore, they can be
assumed constant, as they were in the equations
(31) and (32). It is found that ps = 0.62 and
PQ[’g = 055

During the course of the experiment, there is
no marked dependence of the death rate of adults
on the density, but in the very early stages and
toward the end at 190 days the losses are greater.
Perhaps the vulnerability of newly emerged adults
to accident would account for the initial increase
whereas the final would be due to a number reach-
ing their natural life span. In addition to these
increases there are some random fluctuations.
However, in constructing the theoretical curves,
it is assumed that the death rate remains constant
at its approximate mean, 2%, i.e., ¢ = 0.02 adults
per day.

There is a significant decrease in the number
of eggs laid per adult with increase in the density
of adults, owing probably to crowding and inter-
ference. In the continuing experiments the aver-
age number of fertile eggs laid per adult is about
one, and so for the theoretical model it is assumed
as a first approximation that by = 1 egg per adult
per day and remains constant.

In the continuing experiments each adult de-
stroys about one egg per day. The egg population
rapidly approaches the steady value of about 1,000
for the 40-g environment ; hence the proportion of
eggs destroyed per adult per day is taken in the
theoretical model to be k, = 0.001. The experi-
ments show that when the density of adults is low
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the value of k, is somewhat greater than this. This
could be caused by the preference of adults for
conditioned flour, i.e., flour which has already
been explored, as described by Ghent (1963), and
also by the tendency for the insects to cluster on
the boundaries as noted by Neyman, Park, and
Scott (1956). In each of these cases the effective
size of the environment is reduced ; hence the frac-
tion of the effective egg-bearing medium explored
by an adult in unit time would be increased.

Because of the wide variations in the egg-laying
rate and egg-destroying rate, the numerical values
chosen are somewhat arbitrary, being simple fig-
ures somewhere near the average of the experi-
mental values, after allowing for adjustments due
to fertility.

Making simplifications and approximations with-
in the range of accuracy of the respective measure-
ments, the values of the constants chosen in making
the calculations are

a; = 6days

a: = 16 days

a = 30 days
ﬁg [)3 — OSS

¢ = 0.02 adults per day
b1 =1 egg per adult per day
b = bl 172 Pg :OSS
ko =0.001 of the total eggs per adult
per day.

With the given initial conditions and the above
values for the various constants, a graph of the
approximate theoretical population was constructed
using the equation (36). The result, together with
the corresponding experimental curve, is shown
in Fig. 1 by the curves A and A’ respectively.
Although there are some differences these curves
have important general features in common. In

I
Number E',’ N

1000

500

100 150

Time - days
Fig. 1. A, theoretical number of adults. A’ experimen-

tal number of adults. E, theoretical number of eggs. E’,
experimental number of eggs.
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each, the population undergoes a gradual initial
increase for about 30 days, then increases rapidly,
overshooting the final equilibrium number, to reach
the maximum after about 100 days. After some
comparatively gentle fluctuations, the number then
tends to its equilibrium value. By the equation
(12) this is about 550, in close agreement with
experiment.

IFig. 1 also shows the number of eggs at a given
time (curve 1), calculated from equation (18)
using results already obtained in the determination
of N(t). This also is in general agreement with
experimental results (curve E'). The final steady
value calculated from equation (19) is about 960
and this, too, agrees fairly well with the experi-
ments.

For the cases of larvae and pupae, calculation
based on assumptions (31) and (32) were com-
pared with experiment. In each case the theo-
retical populations showed oscillations of the re-
quired period. However, the times at which the
strongest maxima occurred did not agree. Also,
the steady state populations, given by (33) and
(34) seem to be about twice the required number.
Trurther experimental investigations would need
to be carried out before these differences could be
regarded as significant. In particular, the death
rate ¢, on which (33) and (34) depend strongly,
should be investigated more closely.

The calculations described above were made
assuming that b3, ¢, and k, are constant. The ex-
periments indicate that they are influenced to some
extent by variable factors in the population system,
and these variations would account for some of
the differences between the theoretical and exper-
imental results. Variations in b; ¢, and %, can
easily be incorporated in the numerical equation
(36), but so far there is not sufficient information
to describe these variations accurately. A tenta-
tive calculation was carried out taking into account
the tendency for b; and %, to decrease with increase
in N, and a curve closer to the experimental curve
A’ was obtained. The discrepancy is reduced a
little further if the destruction of eggs by larvae
is considered. Again, more accurate information
on the destruction of all inert forms by moving
forms would be needed in order to incorporate
these effects numerically in a mathematical for-
mula.

Consider the result previously referred to, ob-
tained by Neyman, Park, and Scott (1956) for
their simplified model: If the average number X’
of adults in a generation is less than N, then the
expected number in the next generation will be
greater than X’, and if the average number X’ is
greater than N, the expected number in the next
generation is less than X’. From the graphs it is
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apparent that this is in general true for both the
theoretical and experimental curves. However,
there are some small regions where this does not
hold. For the theoretical curve, in the generation
72 to 100 days, X'y = 650. In the next genera-
tion 102 to 130 days, X' =709. Hence, X",
> N, but X's > X’;. It is apparent that the ex-
perimental curve behaves in the same way for this
region. Again, for the theoretical curve, in the
generation 128 to 156 days, X'y = 549, whereas
in the next generation 158 to 186 days, X', = 510.
Hence X3 < N, but X'e < X';. The possibility
that these cases can occur has already been noted
in a previous section.

In an experiment described by Brereton (1962)
to demonstrate the destructive effect of the adult
population on the eggs, populations of 2, 4, 8, and
16 adults per gram were placed in environments of
4 g of flour at 29°C and 75% R.H. The adult
populations were kept constant, and intermediate
immature forms were removed. It was found that
the mean number of eggs in each population soon
reached a constant value, about 93. The theo-
retical number is given by equation (21). Since
the size of the environment is one tenth that in the
continuing experiments the fraction of the medium
explored at a given time will be ten times as great,
and so k, = 0.01. For the total populations X =
8, 16, 32, 64, the equation (21) gives for the total
numbers of eggs, X; = 39, 62, 85, 98. The agree-
ment with experiment is close for the denser popu-
lations, and would be fairly close also for the less
dense populations if the increases in b; and k,
with decrease in the adult population were taken
into account. DBy use of equation (22), the num-
bers of eggs hatching on successive days after their
removal from the influence of the adult population
can be calculated. For the higher populations, the
calculated values in general agree with Brereton’s
experimental results, remembering that the de-
terministic model does not allow for variations in
the hatching times of the eggs.

In conclusion, it can be stated that the model,
based on the destruction of eggs by adults, can
account for the main features of the observed be-
havior of Tribolium populations.

EXTENSIONS OF THE MODEL

The model described here is a simplified one.
The data from the experiments on which it is
based do not yet justify making it more elaborate.
Further refinements could be introduced as more
accurate knowledge of the various parameters and
behavior of the insects becomes available, and some
of these refinements have already been indicated
in the previous section.

It is known that all moving forms destroy all
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inert forms, and it will now be shown how to in-
corporate these effects into the model. First,
consider the destruction of eggs by larvae. Let
ko be the proportion of eggs destroyed by a larva
in unit time. The way in which the effect of egg
eating by adults enters equation (11) indicates
how this additional feature is to be introduced.
The equation (11) must be replaced by

(37) [% + cN]t

t + a,
- [bN exp 3 - f (kN + kuNy)dt %]

t t —a

In calculating the adult population from the
equation (37), the population of the larvae also
is required. The equation (25) must now be
adjusted in the same way, giving

N7y, 1) = bige(r) N(t— 72 — ay)

t — 79
X exp —f

l—Tz—al

(k,N + kzNz)dt % .

With this in (27) with the expression (31) for
q2(72),

[T _
Ll Jo

x [Nexpg_

72/a2

(38) bipe

¢

+a s 1

(k0N+k2n2) dt ; dTQ .
t [ P—
By means of the equations (37) and (38), the
populations of the adults and larvae could be
plotted simultaneously.

If pupae are destroyed by adults and larvae, a
further similar exponential factor must be included
in the righthand side of the equation (37). If /,
is the proportion of pupae destroyed by an adult,
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and /, the proportion destroyed by a larva, per unit
time, this factor will be

r 3 t+a31N _I
- N + LN,)dt .
L=, b

This expression will tend to some extent to replace
the p3 which describes the loss of pupae in the
simpler model.

The population of the larvae is still given by
(38), since this process acts on a following stage,
the pupae.

Corresponding adjustments must be made in
treating the other components in the population.
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COLONIZATION OF THE ISLANDS OF THE GULF OF ST. LAWRENCE BY MAMMALS

Norris S. DENMAN
350 William Birks Street, St. Bruno de Montarville, Quebec, Canada

Terrestrial mammal colonization of the Gulf of St.
Lawrence islands was recently studied by Cameron (1958)
who postulates a sequence of temporary land bridges and
a sequence of arrivals of various species on the adjacent
mainland to account for their presence or absence on dif-
ferent islands. In so doing he violates the principle of
parsimony. A simpler explanation would be that based

on the probable behavior of different animals that find
themselves aboard driftwood rafts.

For simplicity, assume that there were no land bridges
and that all species arrive on the coast simultaneously.
The species then can be divided into three groups with
respect to island colonization: (1) those with bodies light
enough to be easily carried on driftwood rafts (mice),



