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Preface

This primer on population genetics is a supplement to the textbook J. D. Logan
& W. R. Wolesensky, 2009. Methods of Mathematical Biology, John Wiley &
Sons, New York. To cite this primer, please reference:

J. D. Logan, 2009. Primer on Population Genetics,

http://www.math.unl.edu/ dlogan/MethMathBioBook.

I am greatly indebted to books of N. Britton, J. Roughgarden, M. Nowak,
and E. S. Allman & J. A. Rhodes. These notes show a strong influence from
those sources, reflecting some of the same approaches and adopting similar
philosophies. References are given at the end of the notes. I would like to thank
Ben Nolting, a graduate student at the University of Nebraska, for many helpful
discussions and suggestions. One of us (JDL) would like to thank the University
of Nebraska for a Faculty Development Leave during Spring Semester 2009,
which led to the opportunity to write up much of this material and put it an
accessible form.

Suggestions, comments, and corrections are very welcome. Contact infor-
mation is on the web site:

http://www.math.unl.edu/ dlogan/MathMethBioBook.html.

David Logan, Lincoln, Nebraska
August, 2009
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1

Selection

1.1 Introduction

Population genetics forms the mathematical basis for the key ideas in the evo-
lution of species: random variation and natural selection. The subject
of evolutionary biology began with Charles Darwin’s observations and subse-
quent hypothesis that biological species change through time. He conjectured
that some beneficial modification that may occur in a population would be pre-
served in future generations. For example, a change in a trait that increases an
organism’s fitness for its environment leads to survival. This strategy is called
survival of the fittest. Nature, through natural selection, picks out the best
suited traits.

The underlying reasons and biochemical foundations for natural selection
were not known by Darwin. But, the work of Mendel, and those who followed,
showed that genetics provides the underpinnings. For example, chromosomes
in individuals carry genes that contain hereditary markers (DNA) that code for
different traits. Through reproduction, where the parents’ gametes (e.g., eggs
and sperm) form to make the genetic material for their offspring, traits are
passed on. Spontaneous, random mutations can occur, for example, through
the copying of DNA. Therefore, genetic variation can naturally occur from one
generation to another. The beneficial traits, or the ones that increase survival
and reproductive success (fitness), are the ones preserved in future generations.

Mathematically, how do we model this complicated selection process? In its
very simplest form, we keep track of gene frequencies from one generation to
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2 1. Selection

the next. The laws that govern this model are based upon both randomness
and selection rules. In this primer we present the most elementary models.

A brief listing of several of the important, early contributions give a per-
spective of the time line involved and the researchers who played a key role in
this early progression.

— 1859 C. Darwin. The Origin of Species first appeared.
— 1886 G. Mendel. His original paper on plant hybridization.

— 1908 G. H. Hardy and Weinberg (independently). Work on Mendelian pro-
portions.

— 1918 R. A. Fisher. Correlations in Mendelian inheritance; R. B. Robbins, the
mathematics of breeding.

— 1922 R. A. Fisher. Dominance

— 1924 J. B. S. Haldane. The mathematical theory of selection.
— 1926 and 1931. J. B. S. Haldane. The causes of evolution.

— 1930. R. A. Fisher. The theory of natural selection.

1937. S. Wright. The distribution of gene frequencies in a population.

1941. R. A. Fisher. The theory of gene substitution.

A further historical perspective up to 1977 can be found in Edwards (1977).

1.2 Mendelian Genetics

It is quite amazing that Mendel did his work on hybridization and breeding
experiments in pea plants with only the abstract idea of a ‘gene’. His genera-
tion knew nothing about its biochemical basis or DNA sequencing. It wasn’t
until the early 1900s that chromosomes, which carry the heritable traits, were
identified under a microscope, and other researchers began to notice his work.

Mendel’s reasoning was based on an observation—that offspring often ex-
hibit the same traits of their parents, and even their grandparents. Although
not totally predictable, it is an observation that we all have made in our own
families.

The mathematical basis of Mendel’s ideas is elementary probability and
some assumptions about the process. In the simplest terms, using more modern
terminology, we assume that a chromosome has a site, or locus (think of it as
a location on chromosome defined by a DNA sequence), that can accommodate
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one of two different heritable traits, a and b, called alleles. For example, a may
carry the information for brown eyes, and b the information for blue eyes. In
the chromosome there are other loci for other traits, but we are not concerned
with those at this time. Also, several alleles can occur at a locus, but here we
consider only two. Later we discuss the case of multiple alleles at a single locus.
Refer to fig. 1.1 for the following more specific discussion. A chromosome in
an individual’s cell is composed of a pair of identical sister chromotids joined
together at the centromere. Chromosomes come in homologous pairs where a
particular locus occurs on all of the four chromotids. On each of the homologous
chromosomes, the locus contains an a and a, or b and b. In one pair has a and
a, and the other pair has b and b, we say the genotype is ab; if the pairs are
a—a and a — a, then the genotype is aa, and if the pairs are b—b and b— b, the
genotype is bb. The possibilities for the allele pairs (e.g., a at one locus and b
at the other) are aa, ab, and bb. Thus, there are three possible genotypes. How
these genotypes express themselves in an individual is deterimined by genotype
and a dominance relation. For example, for eyes, if a is dominant over b, then
both aa and ab give brown eyes, while bb presents itself as blue eyes. These two
expressions, brown and blue, are called the phenotypes. We say aa and bb are
homozygous genotypes, while ab is heterozygous. The genotype ab is the same
as genotype ba.

How does information get to the next generation? During a complicated
process of cell division, an individual carrying the two alleles creates gametes
(e.g., eggs or sperm) that carry only one of the alleles. For example, an ab
genotype produces gametes a and b. When this individual, say a male, mates
with a female, say with genotype aa that produces gametes a and a, random
union of the gametes is assumed to occur and produce zygotes for the next
generation. These zygotes have possible genotypes ab and aa; here, the first the
first element in the pair is from the male, and the second is from the female.
Again, fig. 1.1 shows a crude diagram showing this process, or how alleles of
an ab genotype eventually produces gametes and offspring. Other books and
web articles have much more detailed information about this process and often
present elaborate graphics.

If an bb male mates with ab female, then the male gametes are b and b,
and the female gametes are a and b. The resulting zygotes have genotype bb,
ab, thus producing two phenotypes, blue eyes and brown eyes. We can con-
veniently determine crosses between two genotypes using a Punnett square.
For example, if an bb male is crossed with an ab female, then a Punnet square
gives the information we seek.

b|ba bb
b|ba bb
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al\/a b A genotype ab cell with homolgous pair of chromosones;
each having two sister chromotids attached at the
centromere.

l

a b
< >< movement to opposite ends
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Figure 1.1 Diagram of the process of where a cell carrying genotype ab, forms
gametes that combine with gametes from a mate to produce a gamete pool;
random union of the gametes in the pool then form a new zygote.
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The probability of those two parents producing an ab offspring is one-half,
and the probability of bb is one-half. Note that the male gametes are listed
in the leftmost column and the female gametes are listed along the top row.
To repeat, by random union of the gametes, there is a 50-50 chance that an
offspring is ab, and a 50-50 chance it will be bb.

The way we quantify all of this information is to track genotype frequencies
and allele frequencies from one generation to the next. Suppose we have a pool
of N individuals having the three possible genotypes aa, ab, bb . We denote the
genotype frequency (or, proportion of the population) of aa, ab, and bb by x,
y, and z, respectively. Thus, x is the number of aa’s divided by the population
N, and so on. It is clear that

r+y+z=1.

If we know the genotype frequencies, we can calculate the allele frequencies
simply. There are 2N alleles in the gene pool. Let p be the frequency (proportion
of) of allele a and let ¢ be the frequency of allele b. The number of a alleles is
twice the number of aa genotypes plus one-half the number of ab genotypes.

So,

_ no.of a alleles 2Nz + Ny 1
= 5 = 5N =x+ 5 Y- (1.1)
Similarly,
_ no.of balleles 2Nz+ Ny 1
q= O = o =z+ Y- (1.2)

Therefore, in a fixed generation, the genotype frequencies x, y, z uniquely
determine the allele frequencies p and q. Clearly,

p+qg=1

But, the opposite is not true. Knowing the allele frequencies p and ¢ does not
determine the genotype frequencies uniquely. It is very easy to invent a simple
example with a population of N = 2; for example, aa and bb vs. ab and ab.
Both have allele frequencies p = ¢ = 0.5, but their genotype frequencies are
x=05,y=0,2=05vs. z=2=0,y= 1. Equations (1.1)—(1.2) always hold
within a generation.

So much for one generation. How do allele frequencies change from one
generation to the next? To fix the idea, let us begin with a population of
adults of genotype frequencies x, y, z; we know the allele frequencies p and ¢
from (1.1)—(1.2). The assumed progression of events is that the breeding adults
produce a large pool of gametes, and the combination of the alleles, located in
the gametes, takes place randomly, producing zygotes for the next generation.
The zygotes are assumed to mature into adults, with no mortality or selection.
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So, the frequencies of zygotes and adults are the same in this model (later we
take into account selection). A diagram shows this schematically:

adults — gamete pool — zygotes — adults.

a
Z @ x =25/64
a y=130/64
b G -9/64
b
zygote
genotype; ﬁlleles gf;]gefie genotypes
(adults) pool
Figure 1.2

An example is shown pictorially in fig. 1.2. Let 2/, 3/, 2’ denote the genotype
frequencies in this next generation (So, ‘prime’ is not a derivative, but rather
means ‘next generation’.). Frequency means probability, and so we can ask what
is 2’ = Pr(aa), y' = Pr(ab), 2’ = Pr(bb). A zygote from the next generation is
formed by randomly choosing two gametes from the large gamete pool. We can
think of this formation as a binomial experiment; we first choose gamete 1, and
then we choose gamete 2. So, we are filling two slots. Because the gamete pool
is very large, we can consider these two choices as independent, even though
we are choosing without replacement. The possible results of the two ordered
choices are the four pairs of slots: aa, ab, ba, and bb. So, by independence,
2’ = Pr(aa) = Pr(a) Pr(a) = p-p = p?. Similarly, 2’ = Pr(bb) = ¢>. Finally, the
probability of the genotype ab is the probability is the probability of getting ad
or ba; hence,

y" = Pr(ab) = Pr(choosing ab or choosing ba)
Pr(choosing ab) + Pr(choosing ab) = Pr(a)P(b) + Pr(b) Pr(a)
= 2pq.

Again, compare to a binomial experiment. We make two choices of a random
variable X that gives the number of successes, say, picking an a. A success
has probability p, and failure (picking a b) has probability ¢. The number of
successes is binomial distributed. Thus, it has density

2
Pr(X =k) = (k)p’%f—k, k=0,1,2.
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These are the frequencies for the next generation. Clearly, Pr(X = 2) = p2,

Pr(X =1) = 2pq, Pr(X =0) = ¢*.
Now that we know the genotype frequencies for the next generation, we can
compute the allele frequencies from (1.1)—(1.2). We have

/

1 1
'+ -y =p*+ =2pg = p,

p 2 2
1 1
/ / / 2
= + -y =q¢° + =2pqg =q.
q z 2y q qu q

So the allele frequency did not change in the next generation. This fact will
clearly be true if we iterate to the next generation, and so on. This is the
famous Hardy—Weinberg law that we now state as a theorem. In stating the
theorem we return to a time series notation for the allele frequencies; that is.
let p; and g; be the allele frequencies in the tth generation. Generally, we refer
to the zeroth generation as the parent gemeration, the first generation as the
Fy, or first filial generation, F, the second filial generation, and so on.

Theorem 1.1

(Hardy—Weinberg) Let pg and gg be the frequencies of alleles a and b in the ini-
tial £ = 0 population. Then, under the assumptions of random mating, random
union of gametes, and allele frequencies independent of sex,

P41 =Dt, Q1 =4, t=0,1,2,..,
or p; = po, ¢ = qo, for all ¢ = 1,2,3,.... For generations after the initial
generation, the genotype frequencies are

Tt :pt2a ytZQPtQtv ZtZQtQ) t:17273a""

The ratios p? : 2pq : ¢% are called the Hardy—Weinberg ratios, and the
system is said to be in Hardy—Weinberg equilibrium.

Example 1.2

. Consider a population with four individuals (see fig. HWfig) of genotype aa,
ab, ab, ab. Thus xg = 1/4, yo = 3/4, zo = 0. Thus, py = 5/8, qo = 3/8. The
next generation has genotype frequencies z; = 25/64, y; = 30/64, z; = 9/64,
and p; = 5/8, ¢; = 3/8. All future generations will have these same genotype
and allele frequencies.

Observe that we have not tracked the population of genotypes or alleles,
just their frequencies. Later, when we discuss fitness, which includes mortality
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and fecundity, we also track population growth. Without knowing the vital
statistics or life history parameters of a population it is impossible to know
size, for example, of the gamete pool. We also point out that this model is the
simplest type of accounting; we are keeping track of a genotypes from organisms
that have a single life cycle, or non-overlapping generations. All the organisms,
equally fit, reproduce once and then die, all at the same time. There is no
evolution in such a system.

It is straightforward to extend Mendelian genetics to more complicated
breeding systems. Consider the following example with two loci.

Example 1.3

. Mendel’s experiments involved pea plants with different characteristics. We
consider two loci with alleles D and d (tall or dwarf plants) and G and g
(green pods or yellow pods). D and G are dominant over d and g. Consider a
cross breed with a DdGg and a ddGg. We assume the alleles at the loci sort
independently, meaning that in gamete formation alleles for height and color
separate, independently. We can draw a Punnett square to show the sixteen
possible results of the cross. The leftmost column are the allele pairs of the
ddGg parent (parent 1), and the topmost row are the allele pairs of the DdGg
parent (parent 2).

| DG Dg  dG  dg
dG | DAGG DdGg ddGG ddGg
dg | DdGg Ddgg ddGg ddgg
dG | DAGG DdGg ddGG ddGg
dg | DdGg Ddgg ddGg ddgg

We assume that all results are equally probable. There are 6 different geno-
types for the offspring: DdGG, DdGg, Ddgg, ddGG, ddGg, ddgg. Because
D and G are dominant, there are four different phenotypes: tall-green, tall-
yellow,dwarf-green, dwarf-yellow. We can count the number of phenotypes in
each case and divide by 16 to get the probability of each occuring:

phenotype  probability

tall-green
tall-yellow
dwarf-green

Gleslosbg]e

dwarf-yellow

We can also compute the probabilities using the laws of probability and
independent events. For example, to compute the probability of a dwarf-yellow
plant we have:
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Pr(ddgg) = Pr(dg from parent 1 and dg from parent 2)
Pr (dg from parent 1) Pr (dg from parent 2)
= Pr(d from parent 1) Pr (g from parent 1)

x Pr (d from parent 2) Pr (g from parent 2)
1 2

11 1
2 2 2 16

I
[t

EXERCISES

1. Draw Punnett squares for a cross between an aa male and a bb female and
a cross between an ab male and ab female.

2. Tay-Sachs is a disease that occurs in children of parents of Jewish Ashkenazi
descent. Roughly 1 out of 31 carry the recessive allele b in the heterozygous
state ab, where a is a dominant allele. Only the homozygous bb individuals
get the disease, which is lethal in childhood. What is the probability that
an offspring in this family of individuals will get the disease?

3. Suppose an ab X ab cross has four childrem. Use the binomialdistribution
to find the probability that 3 of the 4 are aa. What is the expected number
of children out of the 4 that will be aa? What is the variance. What is the
expected number of ab’s?

4. Draw a Punnett square for an AaBb cross with an AaBb, where A and a
are alleles at one locus, and B and b are alleles at another locus, and the
loci assort independently. What are the possible genotypes? If A and B are
dominant over a and b, respectively, how many phenotypes will there be?

1.3 Selection and Variability

Population genetics is about how the gene pool of a population changes from
generation to generation and determining the mechanisms that cause the
change. As many so aptly have pointed out, chemicals don’t change over time,
but biological organisms do. Changes that occur are determined by many fac-
tors. A genotype’s fitness may be population dependent, frequency dependent,
or even dependent upon environmental conditions; one of the genotypes, say,
aa, could have some has some selective advantage over the other genotypes in
that it contributes more than its Hardy-Weinberg share of alleles to the next
generation.
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In the simplest case we assume a life cycle that begins with the zygotes in
generation t. The first place selection can enter the process is through mortality
of the genotypes. Zygotes grow to become breeding adults, and the survivorship
of the various genotypes through this growth process may be different. When
breeding occurs, which is the second source of selection, some genotypes may
be more successful than others in producing gametes, and some gametes may
differentially form zygotes for the new generation at time ¢ + 1. Let’s quantify
this progression of events. Let [, [,, and [, denote the probabilities that the
three genotypes, aa, ab, and bb, respectively, survive to breeding adults. These
adults go through a complicated process of producing gametes that then com-
bine to form the genotypes of the new ¢ + 1 generation. Generally, the overall
gamete pool is very large and we cannot know or track the total numbers of
gametes produced in the tth generation, or how these gametes unite. But, we
can postulate the number of gametes produced by each genotype that are ac-
tually incorporated into the population at the (¢ + 1)st generation. To proceed,
we let 2m, be the number of gametes shed by aa genotypes that are incor-
porated into the (¢ + 1)st generation of zygotes, and similarly 2m,, and 2m,
for ab and bb genotypes. (For example, Suppose there are 100 aa’s in the tth
population and [, = 0.7. Then there are 70 breeding adults. If the 70 breeding
aa adults leave 300 gametes that are incorporated into the next generation,
then m, = 35.) The m’s are fecundity factors representing the contributions
to the next generation. All this information is in the table. We emphasize that
the last column is the number gametes contributed to the next generation by
the various genotypes; they are not genotypes, and we do not track the num-
ber of genotypes in the next generation. Recall that allele frequencies do not
determine the genotypes.

zygotes (t) No. genotypes (t) breeding adults (t) ‘ No. gametes (t + 1)

aa Np2 lszz 2mmlmNp2
ab 2Npq 21, Npq 2m,,2l, Npq
bb Ng? 1.Ng> 2m,l,Ng?

The total number of gametes in the (¢ + 1)st generation is the sum of the
last column, or

total gametes = 2mgl,Np? + 2my 21y Npq + 2m,1,N¢?
= 2(mgl.p? + 2mylypg + m.l.q°)N.

This equation leads to the total population N’ of the (¢ + 1)st generation in
terms of the population N at the tth generation because the population is
one-half the number of gametes. Thus,

N = (maclgcp2 + 2myl,pg + leZQQ)N.
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But we don’t know the genotype frequencies; we track only allele frequencies.
Now, the frequency of allele a is

, no. of gametes having a type alleles
p =

total no. of gametes

no. of gametes from aa’s + %(no. of gametes produced by ab’s)

total no. of gametes
2myly Np? + % (2my2l,Npq)
2mgly, Np? 4+ 2m, 21, Npq + 2m 1. N¢?
mglep?® +mylypq
Mglep? + 2mylypg +m.l.q*

Next we introduce the absolute fitnesses coefficients
We =mgly, Wy =myl,, W,=m.l..

These coefficients are products of fecundities and survivorships of the three
genotypes, and they measure the contribution of a given genotype the next
generation. Although fitness can be measured in many ways, one certain mea-
sure is in terms of survivorships and fertility. (Some texts just introduce these
coefficients without relating them to mortality and fertility rates, as we have
done here.) Using these fitness definitions, we can write

o= Wop* + Wypq
Wop? + 2Wypg + W.q?'

(1.3)

Usually we are not focused on population sizes, but only how the allele fre-
quencies change; therefore, we can deal with relative fitness coefficients

We oW, W
1) Yy 9 z — ’
Wmax Wmax Wmax

Wy =

where Wiax = max(W,, W,,, W,). So, we are scaling the fitness coefficients by
the largest of the three. Also, rather than use Wiy, for scaling, we can use any
constant, e.g., W,. This choice would scale the fitnesses by the fitness of the
homozygous bb allele. From (1.3), whatever the scaling, the scaling constant,
e.g., Whax, will cancel out, and we get
Therefore we have
o = (wzp “;wa)p7 (1.4)
w

where

W = wep® —|—2wypq+wzq2 (1.5)
is called the mean fitness. In a similar manner,

q/ _ (wyp + wzQ)q
— =
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These are key selection equations due to Fisher, Haldane, and Wright that
track the allele frequencies from one generation to the next. It is convenient
to write these equations in terms of changes in p and ¢, for example, Ap =
p' — p. Further, which simplifies the formulas for easier analysis, we introduce
weighted fitnesses by

Wp = Wz + Wyq, Wq = Wyp + W.q.
This makes the mean fitness
w = pwy + quy.

Then the change Ap can be written

wy, — W
Ap = p—p=p—L=
W
_ pwp*(pwp+qwq)
w
_ pwp_((l_q)wp+qwq)
w
Wy — W
= pg—t——=
w
_ pqp(wm*wy);q(wyfwz)' (L)

Equation (1.4) or (1.7) is the famous Fisher—-Haldane—Wright (FHW) equa-
tion. We record the result as a theorem.

Theorem 1.4

(Fisher-Haldane-Wright) Given the assumptions above, the change in the fre-
quency p of allele a from one to the next generation is given by

p(w, — wy) + Q(wy —w;)
= .

Ap =pq (FHW equation)

This equation is shorthand for the difference equation

pi(we —wy) + q(wy, — w;)
= .

Ptr1 = Pt + Peqe (FHW equation).
Notice that the FHW equation reduces to the Hardy—Weinberg law if all the
fitnesses are equal, that is, there is no selection.

The following MATLAB file plots the time series p; using the FWH equa-
tion, with po and the relative fitness coefficients given. (See fig. 1.3.)

function FWHequation
clear all
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p=0.2; plist=2; numgenerations=200;

wx=1; wy=0.98; wz=0.8;

for t=1:numgenerations

q=1-p; wbar=wx*p."24+2*wy*p .*q+wz*q."2;
p=p+p .*q *(p*(wx-wy)+q*(wy-wz)) ./ wbar;
plist=[plist,p];

end

time=0:numgenerations; plot(time, plist)

09 J

0.8 1

frequency p

g
o
T
L

0.4 b

0.2 I I I I I I I I I
0 20 40 60 80 100 120 140 160 180 200

generations

Figure 1.3 Time series plot of p;. Note that p; departs from its initial value
very rapidly. In contrast, the approach to equilibrium is extremely slow. The
rate that a selection process departs and arrives is an important issue we shall
discuss later.



14 1. Selection

Example 1.5

If a is completely dominant and we select for it, then we mean
Wy =wy =1+5, w,=1,

where s is a positive selection coefficient measuring the strength of selection
for allele a. In this case, we mean both genotypes aa and bb have the same
fitness. Then the FHW equation becomes

, spq?

=p+ — 1.8
p=pr 1+ s(p? + 2pq) (1.8)

where p = py, p = pg, and p’ = pyy1. We observe that p’ > p, and so pq, the
frequency of allele a, is always increasing. We can use the preceding MAT-
LAB program to plot the sequence for different values of s and different initial
frequencies pg. All the simulations show that the frequencies approach 1 as t
gets large. As in fig. 1.3, the departure from pg is rapid, while the approach to
equilibrium is slow.

1.3.1 Equilibria

The FHW equation is a difference equation, or discrete model of the form

Pir1 = f(De)s

or in shorthand notation, p’ = f(p), where f(p) represents the right side of the
equation. A complete analysis of the FHW equation would include answering
the following questions: Are there any equilibria, or constant solutions? Are
those equilibria stable or unstable? If p approaches an equilibrium frequency,
how fast is the approach? What is the time scale, or roughly the number of
generations that it takes to get to equilibrium? To answer these question, we
briefly review the key definitions and ideas. (This material is covered in Chapter
2 of Logan & Wolesensky 2009, and in most other mathematical biology texts.)
A discrete model

Pir1 = f(pe)

has an equilibrium p = p* iff p* = f(p*). In other words, the difference equation
has a constant solution p; = p*. There is a convenient graphical interpretation
of an equilibrium. On a p'p coordinate system, we sketch plots of p’ = f(p)
and the diagonal p’ = p. Equilibria are values p = p* where the two graphs
cross, or that satisfy p = f(p). Often we sketch a cobweb diagram (e.g., see fig.
1.4 to determine how the time series p; evolves. We say an equilibrium p* is
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locally asymptotically stable iff! p;, — p* for all initial values pg that are
sufficiently close to p*. Analytically, an equilibrium is locally asymptotically iff

|f' (") < 1.

This means that the derivative (the slope of the tangent line) at an equilibrium

p A
unstable
(L1)
p'=fp)
stable -
0,0
(0,0) B p

Figure 1.4 A cobweb diagram showing convergence to the asymptotically
stable equilibrium p = 0. Beginning at the initial value pg, one draws vertical
and horizontal lines to the curve p’ = f(p) and to the diagonal p’ = p, alter-
nately. Note that —1 < f’(0) < 1, which implies stability, while f'(1) > 1,
implying unstable at p = 1.

p* cannot be too large; its absolute magnitude must not exceed 1. Thus, the
graph of f(p) cannot be too steep at the point p* where it crosses the diagonal.
An equilibrium p* is not asymptotically stable iff

/(") > 1.

This means there is not an open interval I containing p*, no matter how small,
such that p; — p* for all pg in I. A weaker definition is that of local stability,
which means that solutions beginning within a distance § of an equilibrium p*
will remain within a distance € of p* for all ¢ > 0; the equilibrium can be stable
without being asymptotically stable—it just has to remain close. Asymptotic
stable equilibria are stable, but not conversely. An equilibrium that is not
locally stable is called unstable.

For equilibria of the FHW equation (1.7) we must have Ap = 0. Thus,
p* = 0 and p* = 1 are always equilibria. To have a different equilibrium, not
occurring at one of the extreme values, we need p(wy — wy) + q(wy — w.) = 0.
This can only occur iff w, —w, and w, — w, have opposite signs. Therefore,

! We use the standard convention to abbreviate ‘if, and only if’ by ‘iff’.
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an internal equilibrium will occur iff w, < w, and wy, > w,, or w, > w, and
wy < w,. We formally record this result:

Theorem 1.6

The FHW equation (1.7) has equilibria p* = 0 and p* = 1; An internal equi-
librium p* (not equal to 0 or 1) of the FHW equation exists iff

Wy < Wy, Wy > Wz, OF Wy > Wy, Wy < Wy, (1.9)

and its value is w w
oz Yy 1.10
p Wy — 2wy + w, ( )

If an internal equilibrium exists, it is unique.

Example 1.7

For an allele a that is completely dominant and there is selection for it (see
Example ref) we have w, = wy, = 1+, w, = 1. Therefore the condition
(1.9) is not met, and therefore p* = 0,1 are the only equilibria. From the FHW
equation in this case, equation (1.8), we see that f(p) > p, and so the curve
f(p) lies above the diagonal in the pp’ plane. A cobweb shows that p* = 0 is
unstable and p* = 1 is asymptotically stable. Often a graphical argument is
easier to make than check the analytic stability criteria. Plots of both p and
f(p) can be sketched with the following MATLAB commands, where the user
enters the formula for f(p):

p=0:0.01:1;
pprime=f(p);
plot(p,p,p,pprime)

One can sketch the cobweb from this plot and identify equilibria. There is
software (e.g., on a TI-84 Plus) that plots a cobweb automatically.
Using the analytic stability criteria, we can make some general statements
about the stability of 0 and 1. First we write the FHW equation (1.7) as
’ p(wz _wy) +Q(wy —w;)

p = [f(p)=p+pq -

p (11— o) =)y )

w

= p(1+(1-p)F(p)),
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where
w
Taking the derivative using the product rule gives
d
f'(p) =rg, 1+ (1=PFE) + 1+ (1 -p)F ). (L.11)

When we evaluate at p = 0, the first term vanishes and so

Wy — W w
"0)=-1+F0) =142+ —= ="
£10) = —(14+ F(0) =1+ 2t _
Therefore, p = 0 is locally asymptotically stable if, and only if, w, < w,, or
the fitness of the heterozygote ab is lower than the fitness of the homozygote
bb. To evaluate the derivative (1.11) at p = 1, we note that the second term
vanishes, but we still have to carry out the derivative in the first term. Notice
that

d
ap 1T A -2FE) =1 -pFp) - Fp).
Evaluating at p = 1 gives % 14+ 1 —-p)F(p))|p=1 = —F(1). Therefore, from
(1.11),
F1)=-F()+1=-22"20 41 = 20,
Wy Wy

Therefore, p* = 1 is asymptotically stable if, and only if, w, < w, or the
fitness of the heterozygote ab is less than the heterozygote aa.
Therefore we have established the following result.

Theorem 1.8

(Stability) The values p* = 0 and p* = 1 are equilibria for the FHW equation
(1.7). (a) p* = 0 is locally asymptotically stable iff w, < w,, and p* =1 is
locally asymptotically stable iff w, < w,. (b) If w, > w,, the p* = 0 is unstable,
and if wy, > wg,then p* =1 is unstable.

We can make a statement about the stability of p* = 0,1, when an inter-
nal equilibrium p* exists. To this end, note that conditions ( 1.9) must hold.
In comparing these conditions with the stability conditions in the preceding
theorem, we easily obtain the following result.

Theorem 1.9

If an internal equilibrium p* exists, then both p* = 0 and p* = 1 must be
stable, or both p* = 0 and p* = 1 must be unstable.
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The top row of fig. 1.5 shows the p’p diagram in the two cases when an in-
ternal equilibrium does not exist. The bottom row of fig. (phasefig.eps) shows
two cases when an internal equilibrium exists. The result below will confirm
the two possibilities shown in this latter case. We examine the internal equilib-

Iy ;
P (1,1) P unstable
stable (1, 1 )
unstable . o
p stable p
P (1,1) P unstable (1,1)

stable

unstable stable

stable p* P unstable p* p

Figure 1.5 Four possible configurations of the p’p phase plane. On the top
row there is no internal equilibrium, and one equilibrium is stable and one
unstable. On the bottom row there is an interior equilibrium that is either
stable or unstable. When it is stable, both endpoints are unstable, and when
it is unstable, both endpoints are stable.

rium p* given by (1.10) in fig. (1.10). The derivation of the stability result is
facilitated by scaling the fitness coefficients by the fitness of the heterozygote
ab. Thus, we choose w, = 1. Then we can write the FHW equation as

plwz = 1) + (1 = p)(1 —w;)

p=f(p)=p+p(l-p) = :

We show the following fundamental result:

Theorem 1.10

The internal equilibrium p*, when it exists, is asymptotically stable in the case
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p* = 0,1 are both unstable, and unstable when p* = 0,1 are both asymptoti-
cally stable.

Proof

Although it seems to be a formidable task, we compute f’(p) and evaluate it
at the internal equilibrium. It is not as bad as it first appears. Let us write the
the right side of the FHW equation as

N(p

F) = p+p1 - p) 2,
W

where N is the numerator N(p) = p(w, — 1) + (1 — p)(1 — w,). Notice that
N(p*) = 0. By the product rule,

N N d d
/ = 1 1—p) = —p— 1— 4 P
f'(p) + ( p)E p@er( ) =
N N W(w, + w, —2) — N(p)4E
= 1+(1-p)=—p=+p(l—-p) —5 =2
w w w

Thus, evaluating at p = p*, we get

* * *wm+w2—2
f’(p):1+p(1—p)7@ 7

where w is evaluated at p*. There are two cases when the internal equilibrium
exists:
Wy <1, 1 >w,, orw, >1, 1 <w,.

The first is when the fitness of the heterozygote is larger than either homozy-
gote, and the second is when the fitness of the heterozygote is less than the
fitnesses of both homozygotes. In the second case, when w, > 1, 1 < w,,
the numerator w, + w, — 2 > 0, and thus f/(p*) > 1. Therefore, when both
endpoints are asymptotically stable, the internal equilibrium is unstable.

Now we consider the harder case w, < 1, 1 > w,, where both both end-
points are unstable. In this case, w, +w, —2 < 0, and f/(p*) < 1. But we still
need to show that f/(p*) > —1. To this end, we obtain a bound on the negative

fractional term
Wy + W, — 2

w
This term will have its largest absolute value when the numerator is largest and
the denominator is smallest. Both of these occur when the fitnesses w, and w,
approach zero. In this limit, w, +w, —2 — —2 and W = w,p*2 +2p* (1 — p*) +
w, (1 —p*)%2 — 2p*(1 — p*). Therefore,

* *w1+w272 * * —2
P ) R ) s
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Therefore, f/(p*) > 0 > —1. This shows p* is asymptotically stable in the case
both endpoints are unstable, which completes the proof. O

1.3.2 Allele Ratios

Sometimes it is easier to analyze the behavior of systems if we write the FHW
equation in terms allele ratios u = p/q or v = ¢/p. This is especially true in
determining the asymptotic behavior (or, the speed of the approach to a stable
equilibrium or away from an unstable equilibrium) of a system near p* = 0 or
p* = 1. Why do we want to know this? Suppose at time ¢ = 0 a deleterious
allele, say, for a disease, enters the population. Clearly, determining how fast
it spreads into the entire population is an important issue. Similarly, knowing
how fast it goes to an equilibrium or dies out is an equally important issue.
To measure speed of approach or departure from an equilibrium, we use
comparison functions. For example, suppose a function of ¢ approaches 0 as
t — o0o. The function can approach 0 like e~%¢
fast, or it can approach 0 like the power function 1/t%, which is algebraically
fast. We learn in calculus that exponential functions decay faster than any
power function. Similarly, exponential growth is much faster than algebraic

(a > 0), which is exponentially

growth; for example, e* grows much faster than ¢t for any n. If we can show
that a function behaves like A, as t — oo, where 0 < A < 1, then we have
geometric decay; because A' = (e ) = e Nt with In A < 0, geometric decay
is exponential decay.

Some examples illustrate how to proceed. First, we derive the following ratio
forms of the FHW equation.

Theorem 1.11

In terms of the ratios v and v of allele frequencies, the FHW equation may be

written
Au = u,_u:u(ww—wy)u%—wy—wz’ (1.12)
UWy + W,
Av = v'—v:v(wz_wy)v+wy_wm, (1.13)
VWy + Wy
Proof

We use the two equations (1.4) and (1.6), which we write in the form
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We prove (1.12) and leave (1.13) as an exercise, which is similar. Therefore,
Au = o —u=L _y

w, — W
):u” q
Wq

I

<
T~
& ‘@8

|

Pwy + qu - pwy — quw;
u .
Pwy + qu,

Dividing the numerator and denominator by ¢ gives equation (1.12). O

Example 1.12

Consider the spread of an allele a into a population where where the selection
coefficients are w, =1+ 2s, wy =1+ s, w, = 1. The FHW equation is
spe(1 — pt)

= -, 1.14
Pt+1 =Pt + 1+ spy ( )

It is an easy exercise to see that p* = 0 and p* = 1 are the only equilibria, with
0 being unstable and 1 being asymptotically stable. Let us first deal with the
rate of departure from the unstable equilibrium p* = 0. Assuming pg is small
and near 0, we can assume the frequency p; is near 0 for for ¢ near 0. We can
try to approximate the right side of (1.14) for small p;. One tool to accomplish
this is to use the geometric series

1
1+2

=1—z+22-23+...

which is valid for |z| < 1. Applying this to the fraction on the right side of
(1.14), we get

=1 —sp; + (spe)® = (sp)> + - -

14 sp;
Thus,

piy1 = pr+spe(l—p)(1 —spy+ (81%)2 — (Spt)3 +0)
= (1+8)pt — s(1+s)p] + O(p}).

Therefore, to leading order,
prr1 = (14 s)pe.
This is the geometric growth equation and it has the simple solution

pr =po(l+s)".
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Thus p; grows geometrically since 1+s > 1. So, the departure from equilibrium
is exponentially fast. The allele a enters the population quickly.

Next we examine convergence to 1. It is hard to expand the right side of
(1.14) for p; near 1. It is better to try a ratio u; or v; and determine how the
ratio converges; that will tell us how p; converges. Notice, as p; — 1, we have
u; — oo and vy — 0. Either will work here, and sometimes one is easier to deal
with than the other. Here, let’s use the v ratio. From (1.13) the FWH equation
is

v = v —v s(L+u)
T T T T A s)uy + (1 2s)
1 1
— u—vs(l
v vl o) oy Ly,

where we have prepared the equation to use the geometric series. Letting

1+s
1+ 2s

we have

Vit1 = Ut _Ut(1+vt) 1 —)\'Ut +O(’Ut2))

s
1—|—2s(

S
= (1 - 1+ 2s + O(Ut))

1+s
- 1+28Ut:>\vt’

to leading order. Therefore, to leading order,

_ t 9o
'Ut—’l)())\ s Vg = —.

Po

Therefore, v; decays to 0 exponentially. This means, to leading order,

= oL

I —q o

Solving for ¢; gives
vt
qt = %@O)\t = 'U()At (1 — 'U()At + O(At)Q)
= Uo)\t,

to leading order. Thus,

bt — 1= UO)‘tu

as t — oo. This means p, — 1 exponentially fast.
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1.3.3 The Course of Evolution

A question that naturally arises is: does selection, as we have modeled it, push
evolution is any preferred direction? For example, does it automatically opti-
mize the fitness of the population? Does it make the population grow more
rapidly? Do the fittest adapt more quickly to change? These are the key ques-
tions in Darwin’s view of evolution, that selection uses genetic variation to pick
those organisms that will adapt better to changes in their environment.

How do we measure adaptation? Well, we have measured fitness of various
genetic traits in the population, and how their frequencies in the gene pool
evolve over time. Fitness is a good place to start. Therefore, we ask, how does
the average fitness of a population change over time? Does selection cause it to
increase?

The mean fitness of a population is

W =w(p) = wyp® + 2pquwy + w.q°, g=1—p.

S. Wright’s view in the 1930s was that w, viewed as a function of the allele
frequency p, was a landscape, or adaptive topography. A way to measure
a system’s view of where to go next is to see how it changes from its current
state p to the future, or how it responds to increases in p. Let us calculate what
happens when p changes to p + Ap.

The FHW equation (1.4) gives
pws + quy
-
PWy + qWy — pW
— e

Ap =

Substituting for w and carrying out a lot of algebra gives
g
Ap = = (P(wy — wy) — qlw, —wy)) .

Now, taking the derivative of w(p) with respect to p yields, after simplification,
dw
W =
Combining these last two expressions gives a fundamental result in population
genetics:

2[p(wy — wy) = q(wz —wy)].

Theorem 1.13

Under the assumptions of natural selection,

_ pq dw

= ——. 1.15
P 2w dp ( )
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Equation (1.15) relates changes in allele frequency to the slope of the mean
fitness curve, or adaptive topography. Clearly, W increases as p increases, and w
decreases as p decreases. At a local minimum or maximum, Ap = 0 and there
is an equilibrium at that value of p. Figure 1.6 shows two of the cases, where
the heterozygote is most fit (left) with w, =1 —s, wy = 1, w, = 1 — 2s, and
where the heterogygote is least fit (right) with w, =145, wy =1, w, = 1+s.
It is obvious that we cannot conclude that w always increases, or that selection
always acts to increase the mean fitness. However, we do observe that we can

approximate (1.15) by
_ pqg Aw

P= 9% Ap’
or A2
_ 2wl

pq

Therefore, selection does act at each value of p to insure that the change in the
mean fitness is always nonnegative.

Figure 1.6

Aw

RN

mean fitness
mean fitness

p p

Example 1.14

In the case of selection against a recessive allele, with w, =1+ s, wy = 1+ s,
w, = 1, the stable equilibrium is at p = 1 and the fitness diagram is shown in
fig. 1.7.

EXERCISES

1. Derive Equation (1.13).

2. Find the following selection models, find the FHW equation and its equi-
libria, and determine the stability of the equilibria; draw a generic cobweb
indicating the behavior of the solution.
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N

—_

mean fitness

Y

Figure 1.7

a) Selection for a recessive allele, where a is recessive and advantageous:
Wy =14+ s, wy, =w, =1

b) Selection for an advantageous allele a that is not completely dominant:
Wy =14+2s5, wy, =1+s, w, =1.

c) Selection for a deleterious allele a where: wy, = 1, wy = 145, w, =
1+ 2s.

d) Selection where w, =1, wy, = 1+ s, w, = 1 —r, where 0 < r < 1,
s > 0. Find the FHW equation and determine the equilibria. Draw a
generic cobweb and discuss stability.

3. In the previous exercise assume w, = 0.2 and the system has the equilib-
rium p* = 0.8, ¢* = 0.2. Find the selection coefficients r and s, and find
the relative fitness of the aa genotype.

4. Consider selection favoring the homozygote with w, = 1 — s, w, = 1,
w, = 1—s. Sketch time series p; vs. t for 450 generations, taking s = 0.025,
0.05, 0.1, 0.25, 0.5, 1, with pg = 0.95. Repeat for py = 0.05. Hint: Use the
MATLAB code FWHequation, inserting the commands in a ‘for s = [0.025,
0.05, 0.1, 0.25, 0.5,1] ...end’ loop. Within a loop, place ‘hold on’ after the
plot command, and after all the loops are completed, type ‘hold off’.

5. Repeat the last problem with selection against the heterozygote with rela-
tive fitnesses w, = 1, wy =1 — s, w, = 1.

6. For selection with fitnesses w, = 0, w, = w, = 1, find the FHW equation
for the allele frequency p; and solve the equation. (Hint: let v, = 1/p;.)

7. For selection with fitnesses w, = 1, wy = w, = 1+ s, show that the u-ratio
equation is
su

I __
R e s e
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and that approximately, for large u,

v =u+ .
14+ s
Solve this difference equation and obtain the result that ¢, — 0 alge-
braically as n — oo.

8. Consider a selection process with fitness coefficients w, = 1 + s, w, = 1,
w, = 1. Show that p = 0 is an unstable equilibrium. Show that the rate of
departure from p = 0 cannot be calculated using a geometric series expan-
sion on the FHW equation for small p. However, show that the departure
is algebraic using the FHW equation for the ratio v = ¢/p. Show that the
approach to p = 1 is exponential.

10. Consider a selection process with fitness coefficients w, = 1+ s, w, = 1,
w, = 1. For different values of the selection coefficients, plot the evolution
of the allele a over time. Compare these results with with mutation alone.

1.4 Mutations and Selection

There is some ambiguity about the a definition of a mutation. If a mutation
is defined as a change in the genetic code, then recombination (for example,
chromosomal cross-over) is a mutation. But many reserve the term mutation for
actual changes in allele frequency, in which case recombination is not considered
a mutation.

One can think of meiosis as introducing two non-mutational mechanisms
for producing novelty by rearranging existing genetic information. The first is
crossover, and second is the random alignment of chromosomes in meiosis I
(for two pairs of homologous chromosomes, it is random which pair of non-
homologous chromosomes end up in cells together after the first division).

In some models of mutation, neither of these processes are are assumed
to occur. Rather, mutation occurs as DNA replicates to produce gametes, for
example, by a base substitution in copying a sequence; a base substitution can
be a transition where a purine (A or G) is interchanged with the other purine,
or a pyrimidine (T or C) is interchanged. A transversion is a replacement
of a purine (A or G) by a pyrimidine (T or C), or vice-versa? An excellent,
elementary discussion of modeling molecular evolution can be found in Allman
& Rhodes (2004), Chapter 4.

2
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1.4.1 Mutation

We focus here on a simple model. We assume recurrent mutations through
the generations with no selection; this is the Hardy—Weinberg case. We assume
for this model that alleles mutate to other alleles already in the population,
and new alleles are not produced nor migrate into the population (‘novel muta-
tions’). We consider alleles at a locus which a or b can occupy, and we assume
during a single generation a is replaced by b with probability u, and b is re-
placed by a with probability v. Generally, v and v are very small probabilities,
perhaps 1 in a million, or on the order 107°. If p; and ¢; denote, as usual, the
frequency of a and b, respectively, at time ¢, then

pi+1 =  alleles a that did not mutate + allele b that mutated to a
= (1—u)pt + vg;. (1.16)
This is the governing equation for recurrent mutation. It is easy to solve for p;.
Note that, upon replacing ¢; by 1 — p;, we get
pey1 = (1 —u—v)p +v,

which is the geometric decay equation (1 —u — v < 0) with a source term wv.
The equilibrium solution is clearly

v
u+tov

*

p:

The general solution is the sum of the general solution to the homogeneous
equation and a particular solution; thus,

pe=C(1 —u—v) +p*.
To determine the the arbitrary constant C' we set t = 0 to get
C =po—p"

Therefore

pe=(po—p")(1—u—v)' +p"
Notice that, because 1 —u — v is very close to 1, the convergence to equilibrium
p* is not very fast. For example, if u = v = 0.000001, then 1 —u—v = 0.999998.
Clearly, 0.999998! converges to zero extremely slowly. Therefore, recurrent mu-
tations take many generations to have an effect. For example, for 0.999998 = %,

we get
t b2 346,573 ti
=~ enerations.
1n0.999998 008
In comparison, selection usually acts on a much shorter time scale, especially

strong selection, as measured by the selection coefficient s. In the case selection



28 1. Selection

is weak (small s with relative fitness coefficients close to one) the time scale
for change can be more comparable to mutation time scale. A MATLAB code
that implements the preceding recurrent mutation over 10° generations is given
below.

function mutation
u=0.000001; v=0.000001; generations=100000; p0=0.05; pstar=v/(u+v);
t=0:generations;
p=(p0-pstar)*(1-u-v).” t +pstar;
plot(t,p)

1.4.2 Mutation with Selection

Now we include selection along with mutation. We recall that selection can
occur as zygotes mature to adults (survivorship), and it can occur from the
breeding adult stage to the production of gametes in the gamete pool for the
next generation (fecundity or fertility). Where in this process does mutation
occur? The key in the simple model we examine is that the only selection taken
into account is differential survivorship from the zygote to breeding adult stage,
and this selection is followed by a random mutation, with no fertility. Therefore,
the fitness coefficients w are the relative probabilities of different genotypes sur-
viving from zygote to breeding. We are assuming that fertility is independent
of genotype, or all individuals produce the same number of gametes, and dif-
ferent combinations of gametes have the same probability of producing healthy
zygotes. So really the w’s are ‘relative survivorships’, not fitnesses. Interpreted
differently, with the assumptions above, relative survivorships and relative fit-
ness are the same. In a more general and realistic model, fertility would be
included and mutation would occur in a complicated mix with differential ga-
mete production.

In an individual’s life, we might conclude that selection acts on the muta-
tions that occur. but, from the perspective of keeping track of alleles, selection
happens first to determine which individuals produce how many gametes, and
then mutation occurs in the reproduction process. In summary, ‘we mutate the
selected values’, or

pbw quw
Pmut = Tp and gmut = Tq
w w
to get
w w
p= (- )L 4L
w w

This is the fundamental equation.
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Example 1.15

Consider the case of mutation along with selection against a deleterious allele
a, where
Wy =1—5, wy=w,=1, s<K1, uv<Ks.

We determine the equilibrium value p*. For equilibrium we require p* satisfy
the equation

w
+ o0,

PWy
= ]_ —_ —_—
p ( u) w w

or
(wp —W)p — upw, + vqw, = 0.

Substituting values for the selection coefficients and simplifying gives
3 2 2 _
sp” +usp” — sp® —up —vp+v=0. (1.17)

This is a cubic equation for the equilibrium value, and cannot readily be solved
exactly. So we will seek a leading order solution. For definiteness, assume

u,v ~0(e?), s~0(), ase—0.

So, ¢ is a small parameter, and we can determine the order of the coefficients in
the cubic (1.17). The question is to determine the leading order approximation
of the solution p. This problem is one of singular perturbation theory, a full
discussion of which is contained in Logan (2008). Here, however, we proceed
directly without the general theory. We assume p ~ O(e?), for some a > 0.
To determine the value of a we look at the order of the six terms in the cubic
(1.17). The orders are, from first to last,

24a 24a 2

El+3a7 E3+2a7 El+2a7 € € , €2

We want to make a simplification, so we first look for the dominant balance
between two terms in the equation. This means we want two terms that are the
same order with the remaining four terms small in comparison. There are (g)
possible choices, or fifteen. All but one of these choices will lead to a contra-
diction. For example, if the first two balance and the remaining four are small,
then 1+3a = 3+ 2a, giving a < 0, which is a contradiction. If the first and third
form the dominant balance, then 1+ 3a = 1 + 2a, giving a = 0 and p ~ O(1)
This means the first and third terms are order €. The remaining four terms are
smaller order, but the leading order behavior implies sp® ~ sp?, which means
p = 1, again giving a contradiction because p = 1 is not a root of (1.17). Other
cases are similar, giving a contradiction, but one. In this one case we try a
balance between the third and last terms. We get 1 + 2a = 2, or a = % This
means p ~ O(y/€), and the third and last terms are order 2. The remaining
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four terms are order €%/2, ¢4, 5/2, £5/2 which are all of smaller order than £2.
This is the dominant balance. Therefore, approximately, sp? ~ v, or

v
S

This is the leading order approximate solution to equation (1.17), which gives
the equilibrium.

1.4.3 Weak Selection Approximation

In many evolutionary changes, the selection coefficient s is on the order of
1073, or 1000 years for changes to occur. Therefore we can regard s as a small
parameter in the FHW model and make approximations to leading order in s.
This is the weak selection approximation.

To be specific, let us assume in a given model that the relative fitness
coefficients are

wy =14+hs, wy=1+ks, w,=1 s<K1,
where g and h are order 1 constants. Then the mean fitness is
w = (1+hs)p®+2(1+ks)pg+ ¢*
= p?+2pg+q*+ O(s) = 1+ O(s).
Then the FHW equation is
p(ws — wy) + q(wy —w;)

Ap = p'—p=pq —
w
B [(h—k)p+ kqls
- PO

= pal(h— k)p+ kq]s + O(s?).

Because of weak selection we expect very small changes in p over very small
changes in time. Therefore, it is reasonable to use small time steps At rather
than unit time steps in the difference equation. Thus Ap = pyya¢ — pt, and
we observe that the last equation is a difference approximation (the Euler
approximation) to the differential equation

% = pq[(h — k)p + kqls, (1.18)

where we have ignored the O(s?) terms. This equation can be solved by sepa-
ration of variables to get

P dp L
/100 p(1=p)[(h—k)p+k(l—p)] (t —to).
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The integral can actually be resolved using a partial fraction expansion of the

integrand.

Example 1.16

Consider the case when h = 2 and k = 1. Then (1.18) becomes
dp
P (1 —
o = P =),

which is the logistic equation. This equation can be solved exactly.

Example 1.17

In the case of an advantageous, dominant allele a, we have h = k = 1. The the
differential equation (1.18) is

dp
dt
If, for example, in 350 generations there is a change in p from 0.01 to 0.09, then
0.09
d
/ — P — 350s.
0.o0 P(1—=p)

Calculating the integral numerically using a calculator gives 15.78. Therefore
the selection coefficient is

sp(1 —p)>.

s = 0.045.

EXERCISES

1. For s = 0.045, solve the exact FHW difference equation for the problem
in Example 1.17, and then use Euler’s method to numerically solve the
approximating differential equation with a small step size At = 0.0001.
Compare the two solutions and the values of p at ¢t = 350.

2. Obtain the weak approximation in the case the heterozygote being domi-
nant over the two homozygotes:

wy =1, wy=1+ks, w,=1 s<L

Draw the phase line for the differential equation approximation (1.18) and
discuss the dynamics with regard to equilibria and their stability.

3. In mutation and selection, making the same order assumptions as in Ex-
ample 1.15, show that if the allele a is dominant, then its equilibrium value
is, to leading order,

*

v
pr==
S
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1.5 Density Dependent Selection

So far our discussion of selection has ignored the effects of population size. We
have only tracked allele frequencies, using the relative fitness coefficients, w,,
Wy, W,, which were assumed to be constant. Yet we know from elementary
studies in population dynamics that a populations growth can be limited by
population size, or density dependent growth. For example, in the logistic model
for population growth, the intraspecific competition for resources limits the
growth rate as the population increases. Now we want to build this type of
competition into the natural selection model, where the fitness coefficients for
the various alleles, or traits, depend on the total population. This concept is
density-dependent selection.
To this end, we will use absolute fitness coefficients

W, = Wx(N)a Wy = Wy(N)a W, = WZ(N),

where N = Ny is the total population at time ¢. This means that the population
in the next generation is now, in terms of the definitions in Section 1.2, that
the survivorships and fecundities are now functions of the total population.
Therefore, the total population at the next generation is

N' = (Wo(N)p® +2Wy(N)pg + W.(N)g*)N,
where the average absolute fitness is
W(N,p) = Wa(N)p? + 2Wy(N)pg + W.(N)g*.
Further, the allele frequency equation becomes

, Wa(N)p* + W, (N)pq

W(N,p)
Written out in difference equation form, the governing equations are

W (Ny)p? + W, (N,
Ptq1 = ( t)ﬁ y( t)ptqta (1-19)
W(Ntapt)

Niyr = W(Ntapt)Nt7 (1~20)

which is a two-dimensional system of nonlinear difference equations.
We can study (1.19)—(1.20) in the usual way (for example, see Chapter 3 of
Logan & Wolesensky, 2009). The equilibria are solutions to
p* _ WI(N*)g*z + Wy(N*)p*q*
W(N*,p*) ’
W(N*,p")N™,

N*
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or

W(N"p) =1, Wo(N")p" +W,(N")q" = L.

To make further analytical progress we have to make some assumptions
about the dependence of the fitness coefficients on the total population size.
We expect that fitness of all the genotypes decrease with increasing population.
One assumption is to take logistic-type dependence
/rl‘

K,

Ty

Tz
N
KZI

Wy(N)=1+r,——N, Wy(N)=1+r,—-%N, W,(N)= 147, — 2N,
z
where the r’s are the growth rates and the K’s are carrying capacities for the
different genotypes. Still, an analytic approach is untenable. Now, we can input
numerical values for the growth and carrying capacities and study the evolution
of the system (1.19)—(1.20) in the pN phase plane. The general case involves
a complicate mix of both genotypes. But a system where there are tradeoffs
among growth rates and carrying capacities has more interest and possibilities.

This leads back to the classic ecological question of r selection vs. K selection.

Example 1.18

The following MATLAB m-file plots an orbit of (1.19)—(1.20) in the pN phase
plane (N is scaled by the initial population) for given initial values and given
growth and carrying capacities. In the case shown the heterozygote has a
smaller growth rate than both homozygotes, but a larger carrying capacity.
The plot, in fig. 1.8 shows a small initial dip in the population and then a
gradual growth up to an equilibrium p = 0.227, N = 1.38.

function densitydepsel

rx=.1; ry=.09; rz=.1; kx=100; ky=150; kz=100;

p=0.2; q=1-p; pevolve=p; Ninit=125; N=Ninit; Nevolve=N;
generations = 200;

for t=1:generations

wx=14rx-(rx/kx)*N; wy=1+ry-(ry/ky)*N; wz=1+rz-(rz/kz)*N;
w=wx*p. 24+ 2*wy*p.*q+wz*q."2 ;

NN=w.*N; PP=(wx*p+wy*q).*p./w ;

N=NN; p=PP;
Nevolve=[Nevolve,N]; pevolve=[pevolve,p];
end

time=0:generations; plot(pevolve,Nevolve/Ninit,'LineWidth’,1.0),
xlabel(’allele frequency p’,'FontSize’,14); ylabel('scaled population’,'FontSize’,14);
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Figure 1.8 Numerical solution of the system (1.19)—(1.20) for fitnesses of
logistic form. On the vertical axis the population is scaled by the initial popu-

lation, in this case 125.
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