1 DMatrices

The study of linear systems is facilitated by introducing matrices. Matrix theory
provides a convenient language and notation to express many of the ideas con-
cisely, and complicated formulas are simplified considerably in this framework.
And, importantly, matrix notation is more or less independent of dimension.
Therefore the results we present for two equations in two unknowns will extend
easily to n equations in n unknowns. In the first section we present a brief intro-
duction to square matrices Some of the definitions and properties will be given
for general n by n matrices, but our focus is mostly on the two-dimensional
case.

A square array A of numbers having n rows and n columns is called a square
matrix of size n, or an n Xxn matrix. The number in the ith row and jth column
is denoted by a;;. A general 2 x 2 matrix has the form

A= ail a2 .
a21  G22
The numbers a;; are called the entries of the matrix; the first subscript ¢
denotes the row, and the second subscript j denotes the column. We often
denote matrices using the brief notation A = (a;;). An n-vector x is a list of

n numbers x1, Zo, ..., T,,, written as a column; so “vector" means “column list".
The numbers x1, x3, ..., T, in the list are called its components. For example,

is a 2-vector. Vectors will be denoted by lower case boldface letters like x, vy,
etc., and matrices will be denoted by capital letters like A, B, etc. To minimize
space in type setting, we often write, for example, a 2-vector x as (x1,z2)T,
where the T denotes "transpose", meaning turn the row into a column.

Two square matrices having the same size can be added entrywise. That is,
if A = (a;;) and B = (b;;) are both n x n matrices, then the sum A + B is
an n X n matrix defined by A + B = (a;; + b;;). A square matrix A = (a;;)
of any size can be multiplied by a constant ¢ by multiplying all the elements
of A by the constant; in symbols this scalar multiplication is defined by
cA = (cai;). Thus —A = (—aj), and it is clear that A + (—A) = 0, where 0 is
the zero matrix having all entries zero. If A and B have the same size, then
subtraction is defined by A — B = A+ (—B). Also, A+ 0 = A, if 0 has the
same size as A. Addition, when defined, is both commutative and associative.
Therefore the arithmetic rules of addition for n by n matrices are the same as
the usual rules of algebra of real numbers.

Similar rules hold for addition of column vectors of the same size and mul-
tiplication of column vectors by scalars; these are the definitions encountered
in multivariable calculus: vectors add componentwise, and multiplication of a
vector by a scalar multiplies each component of that vector by the scalar.



Example 5.3 Let
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The product of two square matrices of the same size is not found by mul-
tiplying entrywise. Rather, matrix multiplication is defined as follows. Let
A be and n by n matrix and B be an n by n matrix. Then the matrix AB is
defined to be the n by n matrix C' = (¢;;) where the ij entry (in the ith row and
jth column) of the product C is found by taking the product (dot product, as
with vectors) of the ith row of A and the jth column of B. In symbols, AB = C,
where

cij = a; - bj = a;1b1j + asebaj + - - + Ainbyy,

where a; dentoes the ith row of A, and b; denotes the jth column of B.. Gen-
erally, matrix multiplication is not commutative, i.e., AB # AB, so the order
in which matrices are multiplied is important. However, the associative law
AB(C) = (AB)C does hold, so you can regroup products as you wish.The dis-
tributive law connecting addition and multiplication, A(B + C') = AB + AC,
also holds. The powers of a square matrix are defined by A% = AA, A3 = AA2,

and so on.
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Next we define multiplication of a n X n matrix A times an n-vector x. The
product Ax is defined to be an n-vector whose ith component is a; - x.In other
words, the ith element in the column vector Ax is found by taking the product

(dot product) of the ith row of A and the vector x. The product xA is not
defined.



Example 5.5 When n = 2 we have
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The main diagonal of an n x n matrix A are the entries a;;, i = 1,2, ..., n,

on the diagonal. A square matrix having ones on the main diagonal and zeros
elsewhere is called the identity matrix and is denoted by I. . For example,

the 2 x 2 identity is
10
1_<0 1).

It is not difficult to show that if A is any square matrix, then Al = IA = A.
Therefore multiplication by the identitiy matrix does not change the result, a
situation similar to multiplying real numbers by the unit number 1. If A is an
n X n matrix and there exists a matrix B for which AB = BA = I, then B is
called the inverse of A and we denote it by B = A~'. If A~! exists, we say A
is a nonsingular matrix; otherwise it is called singular. One can show that
the inverse of a matrix is unique.

Now we indicate how to compute the inverse of a 2 x 2 matrix. First we define
another useful number associated with a square matrix A called its determinant.
The determinant of a square matrix A, denoted by det A, is a number found
by combining the elements of the matrix is a special way. For a 2 x 2 matrix

Then

detA:det(Z Z)zad—cb.

Example 5.6 We have

2 6
det( 5 0 ) =2.0—(-2)-6=12.

Now we can give a simple formula for the inverse of a 2 x 2 matrix A. Let

(2 4)

be a nonsingular matrix. Then



So the inverse of a 2 x 2 matrix is found by interchanging the main diagonal
elements, putting a minus signs on the off-diagonal elements, and dividing by
the determinant.

Calculating the determinant of a 3 x 3 or larger matrix is more computation-
ally involved. There is a simple scheme for a 3 x 3 matrix that many learned in
high school, along with mnemonic devices to help. The formula is

a b ¢
det | d e f | =aei+bfg+ cdh—cef —bdi — ahf.
g h i

For larger sized determinants there are no simple schemes. Methods based
on row reduction are used in practice, as well as expansion by minors.These
methods are encountered in elementary courses in matrix algebra. Computer
algebra packages have commands that return the determinant instantly.
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The reader should check that AA~! = 1.

Example 5.7 If
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Equation (1) is revealing because it seems to indicate the inverse matrix
exists only when the determinant is nonzero (you can’t divide by zero). In fact,
these two statements are equivalent for any square matrix, regardless of the
size: A™! exists if, and only if, det A # 0. This is a major theoretical result
in matrix theory, and it is a convenient test for invertibility for matrices. The
reader should remember the equivalences

ol

A~ texists < A is nonsingular < det A # 0.

Matrices were developed to represent and study linear algebraic systems
(n linear algebraic equations in n unknowns) in a concise way. For example,
consider two equations in two unknowns x1, x2 given by

1121 + appra = by

a21%1 + a22T2 = by
Using matrix notation we can write this simply as
Ax = b, (2)

where



A is the coefficient matrix, x is the column vector of unknowns, and b is the
column vector representing the right sides. If b = 0, the zero vector, then the
system (2) is called homogeneous. Geometrically, each equation in the system
represents a line in the plane. When b = 0 the two lines pass through the origin.
A solution vector x is represented by a point that lies on both lines. There can
be a unique solution where both lines intersect at a single point; there can be
infinitely many solutions where both lines coincide; or there can be no solution.
if the lines are parallel.

The following theorem tells us when the linear system (2) is solvable. It is
an important result that will be applied often in the sequel.

Theorem 1 Let A be a 2 x 2 matriz. If A is nonsingular, then the system
Ax = b has a unique solution given by x = A~1b; in particular, the homoge-
neous system Ax = 0 has only the trivial solution x = 0. If A is singular, then
the homogeneous system Ax = 0 has infinitely many solutions, and the nonho-
mogeneous system Ax = b may have no solution or infinitely many solutions.

It is easy to show the first part of the theorem, when A is nonsingular, using
the power of matrix notation. If A is nonsingular then A~' exists. Multiplying
both sides of Ax =b by A~!, we get

A7 'Ax = A7'p,
Ix = A 'b,
x = A 'b,

which is the unique solution. But, we remark that this method of finding and
multiplying by the inverse of the matrix A is not the most efficient method for
solving linear systems. The method of Gaussian elimination, introduced in linear
algebra, is an efficient algorithm for solving large systems. To prove the theorem
in the case that A is singular we appeal to the geometric interpretation. If A
is singular, then det A = 0, and the two lines represented by the two equations
must be parallel (can you show that?). Therefore they either coincide or they
do not, giving either infinitely many solutions or no solution.

It is important to remark that Theorem 1 gives a characterization of solutions
of linear systems of any size, not just two equations in two unknowns, but rather
n equations in n unknowns.

Example 5.8 Consider the homogeneous linear system
4 1 Iy o 0
8 2 2 )\ 0 /)~

The coefficient matrix has determinant zero, so there will be infinitely
many solutions. The two equations represented by the system are

41+ 29 =0, 8x1+ 229 =0,



which are clearly dependent; one is a multiple of the other. Therefore we
need only consider one of the equations, say 4x; + o = 0. This is one
equation in two unknowns, so we are free to pick a value for one of the
variables and solve for the other one. Let z; = 1; then o = —4 and we
get a single solution x = (1, —4)T. More generally, if we choose z1 = a,
where « is any real parameter, then x5 = —4a. Therefore all solutions are

given by
< — T . « . 1
o T2 o —4a o —4 ’

Thus all solutions are multiples of (1, —4)T, and the solution set lies along
the straight line through the origin defined by this vector. Geometrically,
the two equations represent two lines in the plane that coincide.

Finally we introduce the notion of linear dependence and linearly indepen-
dence of column vectors. Let vi, vo be a set of 2 column vectors of the same
size (both 2-vectors). We say the set is linearly dependent if there are two
constants c¢1, co, not both zero, for which

c1Vy] + cove = 0.

If this is true, then one of the vectors could be written as a multiple of the
other; hence the word “dependence". If, on the other hand, this combination of
viand vy forces both constants to be zero, then the set of vectors is not linearly
dependent and they are called linearly independent. Hence, two vectors are
linearly independent if one is not a multiple of the other. A set of three or more
2-vectors in the plane must be linearly dependent.

In the sequel we shall also need the notion of linear independence for vector
functions. From multivariable calculus that a vector function in two dimensions
has the form of a 2-vector whose entries are functions of time ¢, i.e.,

a(t)
r(t) = ,
) ( y(t) )
where t belongs to some interval I of time. The vector function r(t) is usually
called the position vector, and its head traces out a curve in the plane given by
the parametric equations = = z(¢t), y = y(t), t € I. A set of two such vector
functions r(¢) and ro(t) are linearly dependent on I if one is a multiple of the

other; stated differently, they are linearly independent if there are two constants
c1 and ¢z, not both zero, for which

cri(t) +cora(t) =0, tel.

The set of two vector functions is linearly independent on I if it is not a
linearly dependent set; so, rq(t) and ra(t) are linearly independent on I if the
last expression forces both constants ¢; and ¢y to be zero. Unlike scalar vectors
(2-vectors with constant entries), a set of three or more vector functions in the
plane need not be a linearly dependent set.



Example 5.9 The two vector functions

ry(t) = ( izt ) r2(t) = ( ;i )

are linearly independent because neither is a multiple of the other.

Exercise 5.10 The three vector functions

n0= (5 ) mo=(2y) 0= )

are a linearly independent set because neither can be written as a combi-
nation of the others. That is, if we take a combination of them and set it
equal to zero, i.e., c1r1(t) + cor1(t) + cari(t) = 0, for all ¢ in R, then we
are forced to take ¢; = co = c3 = 0. (see Exercise 8).

Exercises

1. Let

(1) (30 ()

Find A+ B, B—4A, AB, BA, A%, Bb, A~1, det B, B3, AI, ATb, adj A,
and A — AI (where A a parameter).

2. Referring to Exercise 1, solve the system Ax = b using A~!.

3. Find all values of the parameter A that satisfy the equation det(A— ) =
0, where A is given in Exercise 1.

A:<_24 —21).

Compute det A. Does A™! exist? Find all solutions to Ax = 0 and plot
the solution set in the plane.

4. Let

5. Determine all values m for which the system
2r+3y=m, —6x—9y=2>,
has no solution, a unique solution, or infinitely many solutions.

6. Use the definition of linear dependence to show that the two vectors
(2,-3)T and (—4,6)T are linearly dependent.

Let
0 2 -1 I
A = 1 6 -2 s L = €T9
2 0 3 I3



8.
9.

10.

(a) Find Ax.
(b) Find det A. Is A invertible? How many solutions does the system
Ax = 0 have?

Verify the claim in Example 5.10 (take two different values of t).

Plot each of the following vector functions in the zy plane, where —oo <
t < +o0:

ri(t) = ( iorif ) ra(t) = ( ; )6%’ rs(t) = ( ti1 )e_t'

Show that these vector functions form a linearly independent set.

Construct simple homogeneous systems Ax = 0 of three equations in three
unknowns that has: (a) a unique solution, (b) an infinitude of solutions
lying on a line in R?, (c) an infinitude of solutions lying on a plane in R3.
Is there a case when there is no solution?



