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Chapter 1

Scaling, Dimensional
Analysis (Secs. 1 & 2)

1.1 Dimensional Analysis

Exercises, page 7

1. The period cannot depend only on the length and mass; there is no way
that length and mass can be combined to yield a time dimension. If we
assume there is a physical law f(P,L,g) = 0, then P = F(L,g). The
right side must be time dimensions, and the only way that we can get
time dimensions with g and L is to take \/L/g. Thus, P = C\/L/g for
some constant C'.

2. If f(D,e) =0 then we can solve and get e = F/(D). Now, e is energy per
mass, or length-squared per time-squared. So the right hand side of the
equation must be proportional to D?. Then e = ¢D? for some constant c.

3. Using nonlinear regression, write

r=b*"  b=(E/p)?,
The sum of the squares of the errors is

8

§=>"0t7 — )2

i=1
Take the derivative with respect to b and set it equal to zero to get

Z Tit?'4

b= L = 569.5695.
Then the energy in kilotons is
1
E=——"—pb° =17.89.
4.186 x 102"

1
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Another method is to average. We have

5
_prr
E —_ tT.
Substitute each data point to get
1.2577
E; = tf, i=1,2,...,8
i

Now average the E; and divide by 4.186 x 10'? to get E = 18.368.

. The variables are ¢, 7, p, e, P. We already know one dimensionless quantity

7 = pr®/et?. Try to find another that uses P, which is a pressure, or force
per unit area, that is, mass per length per time-squared. By inspection,

P
Ty — ——
pgr
is another dimensionless quantity. Thus we have

P
5,2 Ly
flpro/et 7pg7’) 0.

Now we cannot isolate the r and t variables in one dimensionless expres-
sion. If we solve for the first dimensionless quantity we get

P

5/ 42
pr’jet® = F(—).
Jef? = F(=)
Then s
2
P pgr

Because the second dimensionless variable contains r in some unknown
manner, we cannot conclude that r varies like t2/°>. However, if one can
argue that the ambient pressure is small and can be neglected, then we
can set P = 0 and obtain the result

which does imply that r varies like #2/5.

. If # = fgt?, then m = z/gt* is dimensionless and the physical law is

T = % If we include mass, then m must be some function of ¢, x, g, which
is impossible.

I x = —%gt2 + vt, then, by inspection, y = x/gt?> and s = v/gt are

dimensionless. Dividing the equation by gt? gives the dimensionless form
y=-1/2+s.
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Exercises, page 17

1. Assume that f(v, A, g) = 0. If 7 is dimensionless

[r] = [™A%g%],
(LT~1)* L2 (LT %)%,

Thus we have the homogeneous system
O[1+Ol2+013:0, —a1—2a3:0.

The rank of the coefficient matrix is one, so there is one dimensionless
variable. Notice that (—2,1,1) is a solution to the system, and thus

7= Ag/v>
By the Pi theorem, F(m) = 0 or Ag/v? = Const.

2. Two dimensionless variables are

Therefore

3. Pick length, time and mass as fundamental and write
T =Mz, t=DMXt, ™M= A3m.

Then write 7 = A\ \; ‘v, and so on for the other variables. Show that

v —

O _ 2,
PpgR  (1=m/p) = My (v = gripgp” (1= pi/p))

Nl )

So, by definition, the law is unit free.
4. Select M, L, and T (mass, length, and time) as fundamental dimensions.

5. There is only one dimensionless variable among FE, P, and A, namely
PA3/?2/E. Thus,
PA3?JE = const.

6. The two dimensionless variables are

at bt
pL’  p’
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Dimensionless quantities are

Thus, by the pi theorem,

v=VEf <”> .
Pe
Select M, L, and T (mass, length, and time) as fundamental dimensions.
Assume there is a physical law f(T,V,C,Y,r) = 0. We have
=TV CWBYy ¥pas
and so
1=T(L*)** (ML) (MT~")*(MT~'V=?)°,
Setting the powers of T', L, and M equal to zero and solving gives
ap = o4+ a5, 0y =—Qy, 3= —04— Q5.

This leads to two dimensionless quantities

Ty Tr

ve o
Select M, L, and T (mass, length, and time) as fundamental dimensions.

Select M, L, and T' (mass, length, and time) as fundamental dimensions.

Pick length L, time T, and mass M as fundamental dimensions. Then
the dimension matrix has rank three and there are 5 — 3 = 2 dimension-
less variables; they are given by m; = v and my = Rw./p;/ VP. Thus

f(m1, m2) = 0 implies
w=R"'\/P/pG(v)
for some function G.

The dimensions are

energy
[E] = , [T] = temp, [k] = ————.
mass mass temp

energy

It is clear there is only one dimensionless variable, 7 = E/kT. Thus
E/kT = const.
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We have dimensions
[F]=MLT™', [V]=LT", [C]= LT, [K] = ML~ 'T~2.
Assume a physical law f(F,V,C,K) = 0. If 7 is dimensionless, then
m=F*VyerCes Ko,
This gives
1= (MLT Y (L= Y2 (L3~ Y) s (ML™1T=2),
This leads to the system of equations

041+042+301370l4:0,
—2@1—@2—@3—2&4:0,

o +ag =0.

This system has rank 3 and so there is one solution, (—1,—1,1, 1), which
gives the dimensionless variable CK/FV = const.

We have dimensions
[w] =L, [Co] = [C — 1] = ML™3, [d = LT, [¢] = ML™*T".
Assume a physical law f(w, Cy, C1,d,¢) = 0. If 7 is dimensionless, then
T =wMCy2CT3d ™.
This gives
1= Lo (ML™3)*2 (ML) (L*T~ Y (ML2T 1),
This leads to the system of equations

a1 — 3ag — 3az + 2a4 — 2a5 = 0,
as +as+as =0,
oy + a5 =0.

The system has rank 3 and so there are two independent solutions (0, —1, 1,0, 0)
and (1,—1,0,—1,1). This gives dimensionless variables

G wo
Cy’ dCy’

wo Co
dco—G<a)’

which gives the form of the flux ¢,
dC C

Therefore

w - \Cr
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1.2 Scaling

Exercises, page 30

1. In (a) we have u = Asinwt and so v/ = wAcoswt. Then M = A and
max |u/| = wA. Then we have t. = 1/w. In (b) we have u = Ae™ M
and ' = —AAe~*. Then t, = max|u|/ max|u’| = 1/)\. In part (c) we

have u = Ate " and v’ = (1 — MAt)Ae™*. The maximum of u occurs at
t =1/ and is M = A/Xe. To find the maximum of v’ we calculate the
second derivative to get u” = AN\ —2)e~*. So the maximum derivative
occurs at t = 2/ or at an endpoint. It is easily checked that the maximum
derivative occurs at ¢t = 0 and has value max |u’| = A on the given interval.
Therefore t. = (A/Xe)/A =1/ Xe.

2. Here u = 14exp(—t/e) and v’ = —exp(—t/e)/e. Then t, = max |u|/ max |u'| =
2/e~1 = 2¢. The time scale is very small, indicating rapid change in a small
interval. But a graph shows that that this rapid decrease occurs only in a
small interval near ¢ = 0; in most of the interval the changes occur slowly.
Thus two time scales are suggested, one near the origin and one out in the
interval where ¢ is order one.

3. We have
m' = az? —bax®, m=pa’.
Thus
(px?) = 32 pa’ = ax® — ba®,
giving
o =2 b x
C3p 3p

We have a given in mass per time per length-squared and b in mass per
time per volume. Scaling time by p/b and length by a/b leads to the

dimensionless model L1
/ [ —
Yy =37 3Y

If £(0) = 0 then y(0) = 0 and the solution to the dimensionless model is
y(r)=1- e™/3.

Yes, this is a reasonable model. The organism grows exponentially toward
a limiting value. This is, in fact, observed with most organisms.

4. The constants in the problem, V', k, and a have dimensions

L M M

Vi=7 k=2 =7

One time scale is \/m/k which is based on damping. Another is /m/aV,
which is based on the restoring force. To rescale, let T" and L be scales to
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be chosen and let y = z/L and 7 = t/T. Then the model becomes

W T2k VT

— N> 0) =0, /(0 .
—yly'l = —y, y(0) =0,y (0) = &

We want the restoring force to be small and have the small coefficient.
Therefore take T = \/m/aV. Then we get

" aL\/m/aV
y =—-—————

m

V/m/aV

k
- = 0)=0, y'(0) =
yly'l = —79: ¥(0) =0, 4(0) 7

Now choose the length scale L so that the coefficient of y|y’| is one. The
differential equation then becomes

k

"= —yly'| — ey, 0)=0, y'(0)=1, = —.
y yly'l — ey, y(0) y'(0) €=
So, the small coefficient is in front of the small damping term.

5. The dimensions of the constants are

ML M M
I - = — k‘ = —.
[ ] T I [a’] T7 [ } T2L
Letting w = 2/(I/a) and 7 = t/T, where T is yet to be determined, we
get

m o, o, kKII 2 B mo,

If the mass is small, we want to choose T so that the coefficient of the
u” term is small. So, select T' that makes the restoring force term have
coefficient 1. Thus, take

a3

The model then becomes

/ , mklI?
e =—u' —u, e=—p.

6. (a) The constant @ must be budworms-squared because it is added to such
a term in the denominator. The entire predation term must be budworms
per time, and so b must have dimensions budworms per time. (b) The
parameter a defines the place where the predation term makes a significant
rise. Thus it indicates the threshold where the number of budworms is
plentiful so that predation kicks in; there are enough budworms to make
the birds interested. (c) The dimensionless equation is

dN N?
— =sN(1-N/q) - ——=.
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(d) To find equilibrium solutions we set

N2
N(1-N/q)— —— =0
At this point we can use a calculator or a computer algebra program
like Maple or Mathematica to solve the equation for V. Observe that we
obtain a fourth degree polynomial equation when we simplify this algebraic
equation:
sN(1— N/q)(1+ N?) — N? =0.

When s = 12 and ¢ = 0.25 the equilibrium populations are N = 0, /,0.261.
When s = 0.4 and ¢ = 35 the equilibrium populations are N = 0, 0.489, 2.218, 32.29.

. Introduce the following dimensionless variables:

m=m/M, T=z/R, t=1t/T, 1=0/V,

where T" and V are to be determined. In dimensionless variables the
equations now take the form

., aoT

mo= -

—r VT

T = -5

7 afT 1 Tyg

MVm V(A-2)?

To ensure that the terms in the velocity and acceleration equations are
the same order, with the gravitational term small, pick

VT _ afT
R~ MV’

V =+vaBR/M

which gives

as the velocity scale.

. The differential equation is

d = —g(ci —c) — ke, ¢(0) = cp.

%

Here k is a volume per mass per time. Choosing dimensionless quantities
via
C=c/ei, T=t/(V/q),

the model equation becomes

dc o B
C—--0)-bc?, ) =1,

where v = ¢p/c¢; and b = kV'¢;/q. Solve this initial value problem using
separation of variables.
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10.

11.

12.

13.

The quantity ¢ is degrees per time, k is time™!, and 6 is degrees (one can
only exponentiate a pure number). Introducing dimensionless variables

T=T/Ty, 7=t/(Tf/q),
we obtain the dimensionless model
dT
dr
where o = Ty /Ty, E = 0/Ty, and § = kT}/q.

— e BT _B1-T), T(0)=a,

Let h be the height measured above the ground. Then Newton’s second
law gives
mh” = —mg —a(h')?,  h(0) =0, B'(0)=V.

Choose new dimensionless time and distance variables according to
T=t/(V/9), y="h/(V?/g).
Then the dimensionless model is
y'=-1-a@y)? y(0)=0, y(0)=1,
where prime is a 7 derivative and a = aV?/mg.
The model is

k _
Tnx//:_i26 t/a’
X

z(0) = L, 2'(0) = 0.
We have [a] =T and [k] = MT—IQS Two time scales are

mL3
o

a,

The model is
ma’ = —kxe™t* 2(0) =L, 2/(0) = V.
Let 7 =t/a and y = /L be dimensionless variables. Then
y'=—aye 7, y(0) =1, y(0) =5,
where o = —ka?/m and 8 = Va/L.
The dynamics is given by
¥ =raz(l—z/K) if t<ty,

and
2 =rax(l—z/K)—qb(t)x if t>t;.
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Nondimensionalizing,
y=yl-y) if 1<y,
and
y=y(l—-y)—py if 7>
Here, y = /K and 7 = rt. Also, 8 = ¢B/r where b(t) = B.

Setting y' = 0 for 7 > 74 gives the constant population y = 1 — 5. If we
solve for y = y(7) for 7 < 77, then we can set y(7y) = 1 — 3 to obtain 7
as a function of .

The mass times acceleration is the force, or

ms’ = —mgsin,

where the force is the tangential component of the force mg along the arc
of the path. But s = L#, and so

mLO" = —mgsin6.

Then
0 + %sin@ =0, 6(0) =6, ¢(0)=0.

We can scale theta by 6y and time by /L/g. Then the model becomes

1
Y+ g sin(ov) =0, $(0) =1, Y’ (0) = 0.
0
Three time scales are 1
L ot -
/97 w(] ) ]€
These time scales involve the effect of gravity (undamped oscillations),

the angular frequency caused by the initial angular velocity, and the time
scale of the damping.



Chapter 2

Perturbation Methods

2.1 Regular Perturbation

Exercises, page 100
1. Since the mass times the acceleration equals the force, we have my” =
—ky — a(y’)?. The initial conditions are y(0) = A,y'(0) = 0. Here, a
is assumed to be small. The scale for y is clearly the amplitude A. For
the time scale choose y/m/k, which is the time scale when no damping is

present. Letting § = y/A, 7 = t/1/m/k be new dimensionless variables,
the model becomes
7' +e@) +5=0,
where € = aA/m. The initial data is 5(0) = 1, 7’(0) = 0. Observe that
the small parameter is on the resistive force term, which is correct.
2. The problem is
v —u=ctu, u(0)=1, 4'(0)=-1.

A two-term perturbation expansion is given by

1
yt) =e '+ gs(et —e (1 + 22 + 22%)).

A six-term Taylor expansion is

1 1—¢ 1— 2 1—4e
t)y=1—t+ =t* 3 1 5,
y(t) L Y S DT

Plots show the superior performance of the two-term perturbation approx-
imation.

3. We have e~* = o(;5) as t — oo because (using L'Hopital’s rule)
. et . 2 ¢
lim —— = lim t“e”" = 0.

t—o0 = t—oo

11
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4. Using the binomial theorem,

3 —3/2)(—5/2
(1+5y)_3/2=1—§€y+(/)2#62y2+~-

Now substitute y = yo + ey1 + €242 + - - - and expand.

5. (a) We have
t? tanh ¢

12
for large t. Thus ¢? tanht = 0(t?) as t — oo .

=tanht <1

(b) We have

which proves the order relation.

(¢) The order relation follows from the inequality

Ve(\lﬁg)—\ﬂ—egl

for small, positive e.

(d) The idea is to expand cose in a power series to get

Ve
1—(1—€?/24¢€t/4 —--)
_ Ve
22—t /A4 )
_ s 1
1—e2/124---
But, using the geometric series,
1
—— e =1+0(e
e . L)
which gives the result.
(e) We have
t_1 <1
12 t

for large ¢t. So the ratio is bounded, proving the assertion.
(f) By Taylor’s expansion,

e —1=1+e+0(e?) —1=0(e).
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(g) Expand the integrand in a Taylor series and integrate term-by-term

to get
€ € 2
/efzzdx = /(17x2+m—+~~)dx
0 0 2!

An alternate method is to notice that e~ < 1, which gives fOE e da <e.
Thus )
fOE e ™ dx
€

(h) Observe that

lim e*®2¢ =1
e—0

Because the limit exists, the function must be bounded in a neighborhood
of € = 0, which implies the result.

(i) Notice that
e—E
=e P =0

e~ P
as € — oo (exponentials decay faster than power functions grow). One
can use L’Hospital’s rule to show this.

(j) Notice that

Ine

— =¢eplne —0

e—p
as € — 0 since power functions go to zero faster that logarithms grow near
zero. Again, use L’Hospital’s rule to verify this fact.

. Substitute x = x¢ + ex1 + - - - into the nonlinear equation to get

h(e) = p(xo+ex1+---,6) =0
By Taylor’s expansion
1
h(g) = h(0) + h'(0)e + §h”(O)g2 SR

Using the chain rule we can compute these derivatives of h at ¢ = 0 and
thus expand the equation in powers of €. We get

o (ZSE(xO; 0)
¢I('/E03 0) ’

and so on. To obtain x; we clearly require ¢, (xg,0) # 0.

(725(1'0) = 07 T =
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7. (x+1)® = ex. Set ©* = w9 + w16 + - and expand.

8. (a) Let 7 = wt, with w =14 wie + ---. Then the problem becomes

Wy +y=ey?(y)?,  y(0) =1, wy'(0) = 0.

Here, prime denotes a 7 derivative. Now assume a regular perturba-
tion expansion. The leading order problem is

y(/)/ + Yo = Oa yO(O) = 17 y(l)(o) = 07

which has solution
Yyo(T) = cosT.

The next order problem is

Yl +y1 = —2w1y) + yo(wo)®,  ¥1(0) =0, 41 (0) = 0.

The equation simplifies to

" 1 1
Y1+ = <Z + 2wy) cosT — Zcos3r.

To eliminate the secular term take w; = —1/8. Then, to leading

o en (1 1))

(b) Let 7 = wt, with w =3+ wye + ---. Then the problem becomes
Wy 4+ 9y = 3ey®,  y(0) =0, wy'(0) = 1.

Here, prime denotes a 7 derivative. Now assume a regular perturba-
tion expansion. The leading order problem is

1
y(/]/ + Yo = 07 yO(O) = 07 y(/](o) = ga

which has solution

1
Yyo(T) = = sinT.

3
The next order problem is
1
9yY +9y1 = 3y; — 6wryg,  91(0) =0, y1(0) = —3-
The equation simplifies to
I 1/1 . 1 .
Yyi +y = 7\ 12 + 2wy | sinT — 936 sin 3.
To eliminate the secular term take w; = —1/24. Then, to leading

order,

o= ((5- )1,
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The equation with € can be handled with a perturbation series in e. After
determining the coefficients, one can substitute e = 0.001.

If we ignore 0.01z in the first equation then y = 0.1. Then, from the second
equation x = 0.9. Checking these values by substituting back into the first
equation gives 0.01(0.9) + 0.1 = 0.109, so the approximation appears to
be good. But the exact solution is x = 190, y = 1. So the approximation
is in fact terrible. What went wrong? Since x = —90 the first term in the
first equation is 0.01x = —0.9, which is not small compared to the two
other terms in the first equation. Thus the first term cannot be neglected.

Letting h = hg + hie + - -+ gives
hy 4 eh +*h +--- = —1 + 2hoe — (3hg — 2hy)e® + -+ .

Here we used the binomial theorem to expand the right hand side. We
also have the initial conditions

ho(0) = 0, h4(0) =1; hy(0) = h}(0)=0,....
The equations are
0=-1, hY=2hg, hy=—(3ho—2h1), - .

Now we can solve consecutively and get hg, h1, ho, . ... Once the expansion
is obtained, solve h/(t) = 0 to get t,.

The initial value problem is

"n_ _

my" = —ay — kye™"", y(0) =yo, y'(0)=0.

The quantity m is mass, 4o is length, r is time™!, a is mass per time, and

k is mass per time-squared. To nondimensionalize, take u = y/yo and
7 =t/(m/a). Then

' = —u' —eue”®", wu(0)=1, v (0)=0,
where
km mr
T 4
To leading order we have u{ = —u(, which gives ug(t) = A+ Be~ 7. From

the initial conditions A =1 and B = 0, giving

(270} (t) =1.
At the next order we have v/ = —u} — e™®" with zero initial conditions.
The general solution is
1
u(t)=A+ Be 7 + se .
a—«

Use the initial conditions to determine A and B. (Here we are assuming
a # 1.) Continue in this manner.
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Consider the equation

’ T
Yy’ =eycos .

Assuming a perturbation expansion, we get

T
vy =0, y’l':yocos7,....

Easily, yo(t) = «, and so on.

We have
y6 4 5y’1 4o = e—eps/(yoteyit)

To leading order we have y{, = 1 which gives, using the initial condition,
yo(t) = x + 1. To get higher order terms, use the expansion

Yo+eEyr+ - Yo Yo
Let 0 = 6y + 01 + - - -. Then, substituting, gives
" /" 1 2 1 3
90+915+"'+g(690—016 +(02—§90)6 +):O

Then 6 + 609 =0, 07 +6, =0, 65 + 02 = %90, and so on. The initial
conditions give 6y = cos T and #; = 0. Then

1
0y + 0, = —gcosT.

For part (b), multiply the equation by 6’ to get
0’0" + ¢ *sin(eh)0’ = 0.
This is the same as

1 12/ 1 r_
5(9 ) — = (cos(ed)) = 0.

22
Therefore 1 1
59'2 - cos(e0) = C.
From the initial conditions we get C' = —Eiz cose, and therefore the last

equation can be written

= +dr.

cos(ef) — cose
Now integrate over one-fourth of a period P to get
€ / ! ds _ P
V2 Jo yfcos(es) —cose 4

To get the expansion P = 27 + 72¢2/8 + ---, expand the integrand in
powers of € using the binomial theorem.
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The three-term approximation is given by

4 7
2

) =t+ ey 2
Yall) =0T 195 T 504

The error is

Clearly the approximation is not uniform on ¢ > 0.
The leading order solution is
yo(t) = V(1 —Int).
Substituting into the ODE gives
Ly = —%(1 +Int)t3/2.

We find
| Lyo| < 0.0448.

Thus one would expect yo to be a good approximation on 0 <t < e.

Substitute the series u = ug + u1e + - - - into the differential equation and
initial conditions:

1
1+ uge +---
= 1 —wupe +0(c?).

up+ute 4+ ug Fure o0 =

To get the last step we used the geometric series expansion. Now collecting
the coefficient of € we get the leading order problem

uy +up =1, up(0) =0.
Collecting the coefficients of ¢ we get
uy +up = —ug, wu1(0)=0.
The solution to the leading order problem (a linear equation) is
up=1—e"t.
The the next order problem becomes
uf +up=e =1, u(0)=0.
This linear equation has solution
up = (t+1)e " — 1.
Therefore, a two-term approximation is

ut)=1—e‘4e(t+Det—1)+---
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: z\2 d 2 z
19. Let s be the speed of the wildebeest and o = 4/ (%2)” + (—2) =4z /1+y?
be the speed of the lion. The velocity of the lion is

(dy dy)z 7 (a—xz,b+ st —y).

da’dt)  \fla—a) + b+ st—y)?
Now,
/ b+ st — Y / dy
Yy = ) = o
a—x dx
Therefore,
A, pdr_(a—a)(s— @)+ GO+ st —y)
at’ ~ Y (a — x)2 ’
This simplifies to
dy
s—q  dy
(a‘ - x)y” - d = I
& dx
S
dt
So we have
b
(a—a)y" =evi+y? y(0)=0, y(0)=—.
Assuming

Yy =yo(z) +eyi(z) +- -,

the leading order problem is

b
(a - x)y(’)’ =0, yO(O) =0, yé(O) = a»

which has solution

b
yo(z) = Pt

At next order
(a—2)yf =1, 3(0)=0, ¢(0)=0.

Now,
y; = —In(a —z) + C.

Using the second initial condition, C' = Ina. Now integrate again to get

yi(x) = /Omln(ag)dwaxlna.

Then N
y(x)bx+</ 1H(a§)d£+xlna)g+....
0
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2.2 Singular Perturbation

Exercises, page 111

1. (a)

Consider the equation
ext +exd -2 +20—-1=0

If z = O(1) then 22 — 22 + 1 ~ 0 which means x ~ 1,1, a double root
near one. To find the remaining roots assume a dominant balance
ezt ~ 2? with the remaining terms small. Then z = O(1/4/2). This
is a consistent balance because ez*, 22 = O(1/¢) and the remain-
ing three terms are are order one and small in comparison. So the
dominant balance is

ext — 2% ~ 0,

which gives x ~ +1/+/¢. So the leading order roots are
1,1,+1/+/z.

The equation
e +r—2=0

has an order one root z ~ 2. The consistent dominant balance is
ex® ~ x which gives = O(1/4/2). In this case we have ex® +x ~ 0,
which gives the two other leading order roots as

)
xr~+t—

NG

To find a higher order approximation for the root near x = 2 substi-
tute x = 2 4 x1e + - - - into the equation and collect coefficients of ¢
to get 1 = —8. Thus

r=2—-8+---.

Since the other two roots are are order O(1/+/2), let us choose a new
order one variable y given by

y=x/(1/Ve)
So, we are rescaling. Then the equation becomes
Y +y—2/e=0

and the small term appears where it should in the equation. Now
assume y = 4o +y1/€ + - - -, substitute into the equation, and collect
coefficients to get at leading order

yg‘i’yO:O,
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which gives yo = +i. At order O(y/2) we get the equation
3yoyr + 51 —2=0.
Thus y; = —1 and we have the expansions

y=di—e+---.
In terms of z,

et gy

Ve
(¢) The equation
220 —ext — 23 +8=0

has three order one roots as solutions of —z3 4+ 8 = 0, or
r~2 —1+3i.

To find the other roots, the dominant balance is e22% — 23 ~ 0, which
gives
L omisz 1 o—2mi/3

€T ~
22/3 ’ 22/3

(d) The equation
ex® +2* —1=0

has three order one roots (the cube roots of one) given by
1 .
rl -k V/3i.

The dominant balance for the remaining roots is between the first
two terms which gives

i
T ~ :tﬁ.
2. Follow the given hint.
3. Observe that the equation can be written as a quadratic in e:
262 +xe + a3 = 0.

Thus

1
€= Z(_m + V2?2 — 8x3).

These two branches can be graphed on a calculator, and the graph shows
that there is just one negative value for z, near x = 0, in the case that e
is small and positive. Thus assume

x:x16+x252+~-~ .
Substituting into the given equation gives

T=—2+8%+---.
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4. The problem is
ey’ +y +y=0, y(0)=0, y(1)=0.

When € = 0 we get ' + 3 = 0 which has solution y = ce™*. This cannot
satisfy both boundary conditions so regular perturbation fails.

The characteristic equation is em?+m+1 = 0 which has two real, negative
roots given by

mo= 5 (14VI-E) = -140(),
S (-1 VT &) =~ +0(1),

mo =

Here we have used the binomial expansion /1 + z = 1 + 2/2 + O(2?) for
small z. Note that one of the roots is order one, and one of the roots is
large. So the general solution is

y(t) = cre™t + coe™2t,

Applying the boundary conditions gives the exact solution
mit emzt
y(t) =

em —emz

Sketches of this solution show a boundary layer near ¢ = 0 where there is
a rapid increase in y(t). Observe that €™ >> e¢™2. If t = O(1) then

and thus

e
which is an outer approximation. If ¢ = O(e), then

o(~1HOE)E _ f(~1/c+O()1

— €
y(t) ~ o
60(6) _ eO(s)e—t/s
~ o
1— e—t/s

e—1

This is an inner approximation near ¢ = 0.

2.3 Boundary Layer Analysis

Exercises, page 121
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Consider
ey +2y' +y=0, y(0)=0, y(1)=1

By Theorem 2.9 there is a boundary layer at x = 0. Setting ¢ = 0
gives the outer approximation y(x) = Ce~%/2. Use the right bound-
ary condition to find C' = y/e. Then the outer approximation is

yo() = v/ee /2 = (=072,
The thickness of the layer is §(¢) = € and the inner equation is
Y"4+2Y' +eY =0.

The leading order inner approximation is
_ —2¢ _Z
}/1(5) =a+ be ) 5 - g

Now, Y;(0) = a + b = 0, and matching gives a = /e.
We have

ey +y +y2 =0, y(0)=1/4, y(1)=1/2.

There is an expected layer at x = 0. Setting € = 0 and solving gives

the outer solution )

x+2
We applied the right boundary condition. In the boundary layer set
& =ux/c and Y (§) = y(z). Then the inner equation is

Yo(z) =

Y'+Y +eY?=0.

To leading order we have Y;” +Y; = 0 with ¥;(0) = 1/4. So the inner
approximation is
Yi(e) = A(L—e7").

Matching gives A = 1/2 and so the uniform approximation is

1 1

r+2 4

7I/E.

y(r) =

We have
ey’ +(1+2)y =1, y(0)=0, y(1)=1+n2.
The outer solution is
Yo(z) =1+ In(z +1).

The inner equation, with £ = x/de, is

£ 1 ;o
ey =1,
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Balancing gives § = € and the inner first-order approximate equation
is
Y/ +Y/ =0, Yi(0)=0.

So the inner solution is
Yi() = AL - 7).
Matching gives A = 1 and so the uniform approximation is
y(z) =In(z + 1) — e~/
The problem is
ey +(1+)y +y=0, y(0)=0,y(1)=1

By Theorem 3.1 in the text, there is a boundary layer at zero. The
outer solution is yo = 2/(¢t + 1). In the boundary layer set 7 = t/e
and Y (7) = y(¢). Then the inner equation is

Y'+er4+Y +eY =0.

To leading order we have Y + Y/ = 0 with Y;(0) = 0. So the inner
approximation is
Yi(r) =A(1—e7).

Matching gives A = 2 and so the uniform approximation is

2
=2 421 —et) 2.
y(t) = — + 21— )

The problem is
ey +t3% +y =0, y(0)=0, y(1) =e 32
There is a boundary layer near ¢ = 0. The outer solution is
yo(t) = exp(—1.5t%/3).

In the inner region set 7 = t/d(¢). Then the dominant balance is
between the first and second terms and § = ¢/%. So the inner ap-
proximation to leading order is

Y;// + 7—1/3Yi/ —0.
Solving gives

Yi(r) = c/ exp(—0.755%3)ds.
0

Pick an intermediate variable to be n = t/1/e. Then matching gives

c= </ exp(0.75s4/3)ds>
0

-1
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Consider
ey +xy —xy=0, Y (0)=1, y(1)=e.

By Theorem 2.9 there is a layer at * = 0. The outer approximation

1S
T

yo(x) = e ™.

Letting & = 2/J(¢) in the layer, we find from dominant balance that
0(e) = v/e. The inner equation is

Y+ eyl =o.
Then c
Yi(€) = a/ e 2ds +b.
0

Then Y;(0) = b = 0. Matching gives

:(/“’d)

ey +2y' +eV=0, y0)=y(1)=0

The problem is

There is a layer at zero. The outer solution is

t+1

Yo(t) = —In 5

In the boundary layer the first two terms dominate and d(g) = e.
The inner solution is

Yi(1) = A(1 —e %)

Matching gives A = In2. The uniform approximation is
t+1
y(t) =In2(1 — e 2/¢) —In % —1In2.

The problem is

ey —(2-)y=-1, y(-1)=y(1)=1

Now there are two layers near t = —1 and ¢t = 1. The outer solution,
which is valid in the interval (—1,1), away from the layers is
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()

In the layer near t = 1 set 7 = (1 —t)/0(g). We find 6 = /¢ with
inner equation, to leading order, Y;/” —Y; = 1. The inner solution is

Yi(r)=1+ae™ " — (1+a)e”

In the layer near t = —1 set 7 = (¢t — 1)/0(g). We find § = /¢
with inner equation, to leading order, (Y;*)” — Y;* = —1. The inner
solution is

Y(r)=14+be " — (1 +b)e"

K2

Matching gives a = b = 1 and the uniform approximation is

1 _
y(t) = oy e(t=1)/Ve _ (+1)/Ve

The problem is
ey’ —b(x)y' =0, y(0)=a, y(1)=4.

There is an expected layer at x=1 because the coefficient of 3’ is
negative. Therefore the outer solution is

yo(x) = const. = a.

Now make the change of variables

1—2x

a(e)

g =
Then z = 1 — £0 and the differential equation becomes

SV B(1) ~ B ()5 + ) 5¥T =0,
Balancing terms gives § = ¢ and the leading order inner equation is
Y/ +b(1)Y; = 0.

We have Y;(0) = 3. The solution is
Yi(§) = A+ (8 — A)e Ve,
Matching gives A = «. Then, a uniform approximation is
y(r) = a+ (B - a)e M/,
Consider

ey’ —4(m — 2®)y = cosz, y(0)=0, y(n/2)=1.
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. The solution is

u(x) = asin(z//z) + beos(z/Ve)

where a and b are determined uniquely by the boundary conditions. This
a very rapidly oscillating function over the entire interval. To apply per-
turbation methods we set € = 0 to get the outer solution u(z) = 0. This
constant solution cannot be matched to rapid oscillations.

. See problem 1(g).

. Consider

eu — 2+ 1)u' +2u=0, u(0)=1, u(l)=0.

. The problem is

1
ey’ + Ey' +y=0, y0)=1,%(0)=0

which is an initial value problem and appears to be singular. But, the
outer solution is

yo(z) = Ce=="/2

and it is observed that it satisfies both initial conditions when C = 1. It
also satisfies the ODE uniformly, i.e.,

1
ey + v +v0 = ea® — e~ /2 = 0(e)
Thus it provides a uniform approximation and the problem does not have

a layer. It is instructive to try to put a layer at z = 0; one finds that no
scaling is possible.

. Consider

1
ey’ + (:v - 2) y=0, y(0)=1, y(1)=2.

There is a layer at both = 0 and # = 1. The outer solution is yo(
By dominant balancing, the width of the layer in both cases is §(e \/ ()
The inner equation at x = 0 is

1
}/ZI/_Q}/Z :0,

where

The inner equation at x =1 is
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where
_ 1—2z

=
. Using the appropriate boundary conditions gives the left and right inner

solutions
Y (€) = e E/V2, Y, (€) = e—§/V2

The uniform approximation is

y(z) = eIV 4 (DIVE,
7. There is a layer at = 0. The outer solution is yo(x) = —exp(—x). The

layer has width 6(¢) = € and the leading order inner problem is
Y'i// + Y;-I — 0'

It has solution Y;(§) = A + Bexp(—¢). The boundary condition gives
A+ B=1. Thus Y;(§) = A+ (1 — A) exp(—¢). Matching give A=-1 and

the uniform approximation is

y(z) = 2e7%/5 — 72,

8. Assuming a layer at x = 0 we obtain outer solution

yo(x) = f'(x) — f'(1).

Now assume & = /0. In transforming the equation, we need

1 1
o) F0)+ f(0)E6 + -

1

= — f7(0)E6 4 - -+ .

HORER
The dominant balance is § = € and the leading order approximation is
1

YY" — Y =0,

f'(0)

giving )
V(€)= A+ Bet/ O,
Here we need f’(0) = b < 0. Matching gives A = f(0) — f(1).

9. Note that the interval should be 0 < x < b, and not 0 < x < 1. The outer

solution is )

S )

which satisfies the right boundary condition «'(b) = 0 automatically. We
try a layer at © = 0 by defining the scaling

E=2a/d(e).
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Then the equation becomes

~SV7 4 cos(b— €6)U = 1.

1)
We have to expand everything in terms of §. We have
cos(b—1x) = cosbcos(£0) + sinbsin(€d)

1 1 .
= cosb(l — 5(55)2 4 o) +sinb(€6 — 6(55)3 4.
Substituting into the differential equation leads to a dominant balance
giving
§ = +e.
The leading order inner equation is
—U" + (cosb)U = 1.

The general solution is

U(§) — Ae—(cos b)¢ + Be(COSb)£ 4 1 )
cosb
Now, U(0) = A+ B+ -5 = 0. Thus B = — (A + —L3). For matching to
work we must have A = 7(:015 5+ Then we have the uniform approximation
1 1 1 1
— __— g (cosb)z/\E _
u(@) cosb® * cosb + cos(b—x) cosb
1 1
- - —(cosb)z/\/e -
cosb” + cos(b—x)’

The outer solution is clearly
ug(z) =0,
with a layer at z = 1. (Theorem 2.9 applies.) In the layer,
1—x

£= :

€

Then the differential equation transforms to
EU” —a(l - 55)_—1U' = f(x).
€ €
Expanding,
U"+ (a(1) —d' (1)ée +-- U =ef(x).
To leading order,
U +(a(1) —d'(1)€e + - )U] =0,

which gives
U;(€) = A+ Bem e,

The boundary condition is U;(0) = A 4+ Be~*1) = —f(1)/a(1).
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11. See problem 12e.

12. (a) By Theorem 3.1 the problem
ey’ + (L +a?)y —a’y =0, y(0)=y(1)=1

has a layer of order § = ¢ at ¢t = 0. The outer solution is

[ 2 22 -1
yo(f) = 1 + $2 eXp( 2 )

The inner solution is

Yi(§) = A+ (1 - A)e

Matching gives A = /2/e.
(b) By Theorem 3.1 the problem

ey’ + (cosht)y —y =0, y(0)=y(1)=1
has a layer of width § = & near ¢t = 0. The outer solution is
yo(t) = exp(2arctan e’ — 2arctan e)
In the layer use the expansion
L
coshz:1+§z + -
The inner approximation is
Yi(r)=1— A+ Ae™7
Matching gives A = 1 — exp(7w/2 — 2arctane).
(¢) The problem
1 26 !/ /
ey’ + =y —y=0, y(0)=0,y(1)=1

If we assume a layer at ¢t = 1 the outer solution is yo(t) = 0. In the
inner region near ¢ = 1 the dominant balance is between the first and
last terms and the width of the layer is 6 = /. The inner variable
is 7 = (1 —t)/6. The inner solution is

Yi(r) = (Ve +b)e" +be”
We must set b = 0 to stay bounded. So the uniform solution is

(D) = Ve V/VE
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In this problem we have an outer solution yo(¢) = 0 which satisfies
both boundary conditions exactly. So we have an exact solution
y=0.

The problem is

1 1 /
ey’ + 1Y +ey=0, y(0)=0, y(1)=1.
The outer approximation is yo(t) =const., so there are several pos-
sibilities. But, because the y’ coefficient is positive, we suspect the
layer is at = 0. Therefore we apply the right boundary condition
to the outer solution, giving yo(x) = 1. Then assume a layer at © = 0
of width d(e); i.e.,

T
e
The inner problem is
e 1 1
Y + —Y' +eY =0.
e T areE) i

Expanding the second term in a geometric series gives

3

5(e)?

Y”+(1—5(5)§+---)%Y’+5Y=0.

Balancing gives §(¢) = ¢ and the leading order equation is
}/i/l + Y; — 0,

which gives
Y/ (€) = a(1— %),

Matching gives a = 1. Therefore a uniform approximation is
() =141—e %/ —1=1—e"/°

This approximation satisfies y,,(0) = 0, y,, (1) = 1 —exp(—1/¢), which
is one minus an exponentially small term. Substituting into the dif-
ferential equation gives

1
eyl + my; + ey, = £ + exponentially small term.

Boundary layer at the right boundary. Just as illustration we
show how to proceed if the differential equation is

1
/! /
— _—O
€y - 12/ +ey
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with the same boundary conditions. Now the ¢’ coefficient is negative
and we expect a layer at x = 1. Therefore the outer solution is
yo(x) = 0 (from applying the left boundary condition). Now let

&= - (note the change)

Then the inner problem is

€ 7 -1 / _
5(6)2}/ —(1=0()f+-)=Y +e¥Y =0.

4(e)
Note the minus sign that appears when transforming y’. Then, dom-
inant balance forces §(¢) = ¢ and the leading order equation is

Y/ +Y; =0, Y;(0)=1.
The inner solution is
Y/ (€) = a+be S,
Applying the boundary condition gives a + b =1, so
Y/(€) = a+ (1 - a)e™®).

Matching gives a = 0 because yo(z) — 0 as x — 1. Therefore a
uniform approximation is outer + inner - common limit, or

MOETRELS

2.4 Initial Layers
Exercises, page 133

1. The equation is
ey +y=e', y(0) =2

Set ¢ = 0 to obtain the outer solution yo(t) = e~¢, away from ¢ = 0.
€

Rescale near zero via 7 = t/d(¢). Then, in the usual way, we find §(¢) =
and the leading order inner problem is

Y/ +Y:=1.
This has solution Y;(7) = 1+ Ce™". Applying the initial condition gives
C = 1. We find the matching condition holds automatically. So the

uniform approximation is

y(t) = et + et/
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2. The equation is

ey +b(t)y' +y=0, y0)=1,9(0)=—-=+~.

The outer solution is

yo(t) = Cexp (— /Ot b(z)—ldz> )

Near ¢t =0 set 7 = d(¢). Then

S+ 5 O+ VOIS £y Y =0

The dominant balance gives §(¢) = € and the inner problem, to leading
order is
Y/ + b(0)Y! = 0.

This has general solution ¥; = A + Be 7. From Y;(0) = 1 we get
A+ B = 1. The other initial condition leads to Y;(0) = . Therefore the
inner approximation in the initial layer is

B B oy
Yi(r) = (1+b<0)) 50" b(0),

The matching condition gives C' =1+ %. So, a uniform approximation

’ y(t) = (1 + b(ﬁo)) exp (— /Ot b(z)—ldz> - b(ﬁme—bmﬂ/a.

3. The problem is
" 2,/ — ! —
ey +(t+1)% =1, y0)=1, ey (0) =1
The outer approximation is

1
yolt) = ——— + C.

Rescaling in the initial layer gives
C v+ (4 ra(e)2Y =1
5(e)? 3(e) '

The dominant balance is § = € and to leading order we have

Y// _"_Y/ — 0’

which gives
Yi(r)=A+ Be™".
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5.

Now, Y(0) = 1 gives A+ B = 1. And, the other initial condition gives
Y’(0) = 1. So the inner solution is

Yi(t) =2—e€"".

Matching gives C=3. Then the uniform approximation is

1
= —etlep3_
yt) = = H3 -

The damped oscillator is governed by

my" +ay +ky* =0, y(0)=0, my'(0)=1.

Let 7 =t/(a/k) and u = y/(I/a) to get

eu +Y' +u' +u=0, u(0)=0, eu(0)=1.

The standard singular perturbation method with an initial layer at t =0
leads to the approximation

(a)

u(t)=e " — e /e,

In this case the system is
¥ =y—esinz, ey =2y+eyd

with initial conditions x(0) = k, y(0) = 0. Setting ¢ = 0 we get the
outer equations

zy =y,  0=1x3y0
Here we can choose yo = 0 and x¢p = k and the initial conditions are

met. So this problem does not have an initial layer. It is a regular
perturbation problem with leading order solution

I'O(t) =k, yO(t) =0

It is instructive for the student to assume a layer near t = 0 and carry
out the analysis to find that the inner approximation agrees with the
outer approximation.

The problem is

v =v, e =u®—v, u0)=1, v(0)=0

Assume a boundary layer near ¢ = 0. Then the outer problem is

/ 2
UO = Vo, Vo = _UO

Then

up = —ud
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which has solution (separate variables)

1 () = -1
Tire C (t4c)?

ug(t)

In the boundary layer take = t/e. Then the inner problem is
U=cV, V=-U?-V, U0)=1, vV(0)=0
Thus, setting € = 0 and solving yields the inner approximation
U(n) =const. =1, V(n)=e"-1
Matching gives

%ir% up(t) = lim U(n)

n—00

or 1/¢ = 1. Hence, ¢ = 1. Then the uniform approximation is

_ +1-1= 1
YT Ct41
and
v:_71+e—t/5_1_(_1):_71+e—t/5
(t+1)2 (t+1)2

6. The governing equations are
a = —k:fa ~+ kpb, b = k‘fa — kypb.

Therefore a + b is constant, and so a + b = ag, giving b = ag — a. Then
the a-equation becomes

a' = —(kf + kp)a + kyao,
which has general solution

aoky

t)=Ce ikt 22
a(t) = Ce Fot oy

The constant C can be determined from the initial condition.

7. The governing equations for the reaction X +Y — Z are
2 = —kxy, y =—kay.
Therefore x — y = C, where C' is constant. Hence,
¥ = —kx(x — C) = kz(C — x),

which is the logistic equation.
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8. The governing differential equation is
¥ = —rk(T)z, T =T+ h(z— z0).
Making all the suggested changes of variables gives
0 =ete 01+ 5-0), 60)=1,
where A = F/RTy and 8 = —hao/Ty. For small A take
0 =0+ 0,A+60,A4%+--- .

To leading order
0y =1+ (6o, 00) =1,
which has solution 1
Oo(1) = (1 —1/B)e’ + 7
For large A take

1 1
9—90+912+92ﬁ+"'

2.5 WKB Approximation

Exercises, page 141

1. Letting ¢ = 1/v/A we have
ey’ — (1 +a?)?y =0, y0)=0,y(0)=1

This is the non-oscillatory case. From equation (2.96) of the text the
WKB approximation is, after applying the condition y(0) = 0,

Ywkp = lf {exp (ﬁ/oxu +§2)2d§> — exp (—\f)\/om(l +§2)2d§)]

2
2e1 * 212
3 sinh (ﬁ/o (14¢€%) dg) .
Applying the condition y'(0) =1 gives ¢; = 1/2.
2. Letting ¢ = 1/v/A we have

y' + Az +m)'y =0, y(0)=y(r)=0.

This is the oscillatory case and the method in Example 2.15 applies. The
large eigenvalues are

\ nmw _ 9n?
"\ @ m)2de ) 49nt
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The eigenfunctions are

C 3n [*
—sin (7:2/0 (§+7r)2d£)

c . 3n(x3+ 2 4 n2p)
= sin | —= (— + 7wz + 7°2) | .
T4+7 T2

. Let A = 1/£? and rewrite the problem as

2y +ay=0, y(1)=y4)=0.

Proceed as in the oscillatory case.

. Straightforward substitution.

. Make the change of variables 7 = et. Then the differential equation be-

comes 2
207Y 2, _

STy +q(r)*y =0.

We can think of the equation y” + g(et)?y = 0 as a harmonic oscillator
where the frequency is g(et), which is time-dependent. If € is small, it
will take a large time ¢ before there is significant changes in the frequency.
Thinking of it differently, if ¢(¢) is a given frequency, then the graph of

q(et) will be stretched out; so the frequency will vary slowly.

. Here we apply the ideas in Example 2.15 with k(z) = €2* and € = 1/v/\.

Then the WKB approximation is
c1 . \/X 20 Co \/X 2
ywip = — sin <2(e - 1)) + o= C08 (2(6 -1)].

Applying the condition y(0) = 0 gives co = 0. Then

a . (VN 5.
YWKB = ejlc sin (2(62 - 1)>

Then y(1) = 0 gives
sin (?(e — 1)) =0,

472

C(e—1)?

for large n. [Note the typographical error—the boundary conditions should
be homogeneous.]

and this forces
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8. Let € = 1/ to obtain

2y + (2* 4 %)y = 0.

Now let y = exp(iu/e) and proceed as in the derivation of the WKB
approximation.

2.6 Asymptotic Expansion of Integrals

Exercises, pagel48
1.
2. Making the substitution ¢ = tan? @ gives
w/2 1 0o =Mt gt
I = / e A tant0 g = f/ S
0 2Jo (1+t)Vt
Now Watson’s lemma (Theorem 6.1) applies. But we proceed directly by
expanding 1/(1 + t) in its Taylor series

1 =1—t+t2
1+t

which gives
1 ooe—)\t )
I\ =< — 1 —=t+t"—---)dt
=3 )
Now let w = At. This gives

I(A):%lr/\/owe_“<\}a—\§a+u;2+...>

Then, using the defintion of the gamma function,

I = 5o=(0G) = 3G + 35T(3) + )

3. Assume that g has a maximum at b with ¢’(b) > 0. Then expand

g(t) = g(b) + g’ (b)(t —b) +---

The integral becomes

I(\) / ’ f(t)erWat

b
/ F(t)eMa®+a BE=b)+-) gy

Q

b
F(B)eM® / A (B)(1-b) gy

a
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Now make the substitution v = Ag’(b)(¢t — b) to obtain

~ gy L / ’ v
I(\) = f(b)e ) /\g/(b)(a_b)e dv
o f(b)erd® 0
€ v
I\ = 0 [m e’dv
or
I(\) = 7f(b)e)\g(b)

Ag' (b)

for large .

If the maximum of g occurs at ¢ = a with ¢’(a) < 0, then it is the same
calculation. We expand g in its Taylor series about t = a and we obtain
the same solution except for a minus sign and the b in the last formula
replaced by a.

4. (a) We have, using a Taylor expansion,
In) = / e Min(1 4 t%)dt
0
o] t4 t6
= / e Mt — =4 — — - )dt
0

Now let u = At and we get
1 [ uw? ot ub
I\ =~ M= =t =+ )dt
) A/O N matae )

Using the definition of the gamma function, we obtain

1, 2! 4! 6!
_ 74'_7_’_...)

1) = X(F 2% T 3)6

(b) Let g(t) = 2t — t2. This function has its maximum at ¢t = 1 where
¢'(1) =0 and ¢”(1) = —2. Take f(t) = +/1+t. Then

1 2 1 27
I — 1 X(Qt—t) ~ = 1 )\g(l) -
N /0\/ + te dt 2f( Je ' (1)
_ X
- Ve

(¢) Let g(t) = 1/(1+¢). This function has its maximum, with a negative

derivative, at ¢ = 1. Thus Exercise 6.3 holds. With f(¢) = V3 +1

we have
f(l)ekg(l)

Ag'(1)

8
I()\) ~ — = Xe)‘/2
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10.

11.

12.

. We have

MNx+1)= / ufe " du
0

Integrate by parts by letting » = u® and ds = e"*du. Then the integral
becomes

/ ue” du = x/ e "u"tdu = 2T (2)
0 0

(b) Using the fact that e~* < 1 for ¢ > 0, we have

[rn(N)] = n!/}\ tn+1dt

>~ 1
|
< nA thrldt

-1 1

as A — oo.

(c) Observe that
ot oA
/}\ tn+l dt < A\n+1
Then the ratio of r, to the last term of the expansion is

(M)

n
A

This tends to zero as A — oo. So the remainder is little oh of the last
term, and so we have an asymptotic series.

(d) Fix A\. The nth term of the series is does not converge to zero as
n — 00. Therefore the series does not converge.
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13. We have

0 1 L
I()\):/O (t+)\)26 dt

We integrate by parts letting

We get

Then

1 2 © 1
IO) = — — — -t
0 =5 >\3+6/0 ES i

Continuing in the same manner gives

1 2! 3!
I\ = F—F—Fﬁ
n!

oo
-1 n+1 1) e 1
+ + )\nfl( ) +(n+1) /0 t+)\)n+26 dt




Chapter 3

Calculus of Variations

3.1 Variational Problems
Exercises page 158

1. The functional is
1
J(y) = / (¢ sinmy — (y + t)?)dt.
0

First note that if y(t) = —t then J(y) = 2/m. Now we have to show that
J(y) < 2/m for any other y. To this end,

J(y) = /O(y’sinﬂy—(yﬂ)g)dt

1
< / vy sin wydt
0

1
= —f/ (cosy)'dt
0

™

1 2
—;(cos my(1) — cosmy(0)) < p
2. Hint: substitute
y(x) =z +cz(l —z) + co2*(1 — z)
into the functional J(y) to obtain a function F' = F(c;,c2) of the two
variables ¢; and cp. Then apply ordinary calculus techniques to F' to find

the values that minimize F', and hence J. That is, set VF = 0 and solve
for ¢; and cs.

41
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3.2 Necessary Conditions for Extrema

Exercises, page 166

1. (a) The set of polynomials of degree < 2 is a linear space. (b) The set
of continuous functions on [0, 1] satisfying f(0) = 0 is a linear space. (c)
The set of continuous functions on [0, 1] satisfying f(0) = 1 is not a linear
space because, for example, the sum of two such functions is not in the
set.

2. We prove that
b
loll = [ ly(e)ldo

is a norm on the set of continuous functions on the interval [a,b]. First

b b
oyl = [ la(@ds = lal [ @)ldz =al [l

Next, if ||y|[y = 0 iff ff ly(x)|dz = 0 iff y(x) = 0. Finally, the triangle
inequality if proved by

b b

lo+ole = [ @)+ v@lde < [ u@)]+ o))z
ab b a

- /|y<x>|dx+/ fo(@)ldz = [yl + [ol]1.

The proof that the maximum norm is, in fact, a norm, follows in the same
manner. To prove the triangle inequality use the fact that the maximum
of a sum is less than or equal to the sum of the maxima.

3. Let y; =0 and yo = 0.01sin 1000z. Then
[ly1 — y2||s = max]0.01sin 1000z| = 0.01
and

ly1 — 2|l = max |0.01 sin 1000z| + max |(0.01)(1000) cos 1000z| = 10.01.

4. We have
0J(yo,ah) = lim J(yo +eah) = J(w)
e—0 9
— lim aJ(yO +eah) — J(w)
e—0 (a4
— i o2 @0 £ k) = J(w)
n—0 n

= a5J(y0,h).
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5. (a) not linear; (b) not linear; (c¢) not linear; (d) not linear; (e) linear; (f)
not linear.

6. An alternate characterization of continuity of a functional that is often
easier to work with is: a functional J on a normed linear space with norm
[|-]| is continuous at y if for any sequence of functions y,, with ||y, —y|| — 0
we have J(y,) — J(y) as n — 0.

(a) Now let [|yn —yllw — 0. Then ||y, —y|ls — 0 (because [[v][s < [[v[|w)-
By assumption J is continuous at y in the strong norm, and therefore
J(yn) — J(y). So J is continuous in the weak norm.

(b) Consider the arclength functional J(y) = ff V14 (y)3dz. If two
functions are close in the strong norm, i.e., if the maximum of their
difference is small, then it is not necessarily true that their arclengths
are close. For example, one may oscillate rapidly while the other does
not. Take y = 0 and y = n~!sinnz for large n. These two functions
are close in the strong norm, but not the weak norm.

) 6J(y, h) = [ (hy' + yh')da.
) 6J(y,h) = [T 20y + 2h)da.
) 6J(y,h) = e¥Dh(a).
(d) See Exercise 3.6.
) o )= ff h(z)sinz dz.
) 8 )= [P2y'W dx + G (y(b))h(b).

8. Let y, — y. Then J(y,) = J(yn—y)+J(y) — J(y) because J(y, —y) — 0
(since y, —y — 0 and J is continuous at zero by assumption).

Y, h
h
9. We have

J(y+eh) = /b (z(y + el )* + (y + eh)sin(y’ + eh’)?) da.

Now take the second derivative of this function of ¢ with respect to ¢ and
then set ¢ = 0. We obtain

b
§2J = / (22(h)? — y(h')?*siny’ 4 2hh cosy')dz.
a

10. Here the functional is

Then L
5J(y,h) = / (—2yh + 2y'1)dx.
0
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Thus 5
§J(z,2%) = 3

and
AJ = J(y+eh) — J(y) = J(z +ex?) — J(x) = etc.

11. J(y) = fol(l + z)y"?dz. We find

1
5J(y, h) =2 / (1+ 2)y' W da.
0

Now substitute the given y to show §.J(y, h) = 0 for appropriate h.

12. In this case

J(y) = / (),

Then
2m 2m
J(y+eh)= / (1 +ecosx)’dr = 21 + 52/ cos? zdx.

0 0
Then

d 2 )

d—eJ(y +eh) = 25/0 cos” zdz,
and so

d
—J h) |e=o=0.
pR (y +¢eh) |e=o

Thus, by definition, J is stationary at y = = in the direction A = sinz.
The family of curves y 4 €h is shown in the figure.

13. Here L
Ty) = / (342 + 2)dz + y(0)2.
0
Then L
5J(y,h) = / 6yh dz + 2y(0)h(0).
0

Substituting y = x and h = x + 1 gives §J = 5.

3.3 The Simplest Problem

Exercises, page 175

1. (a) The Euler equation reduces to an identity (0 = 0), and hence every
C? function is an extremal. (b) The Euler equation reduces to an identity
(0 = 0), and hence every C? function is an extremal. (c) The Euler
equation reduces to y = 0, which is the only extremal. Remember, by
definition, solutions to the Euler equation are extremals, regardless of the
boundary conditions.
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2. (a) The Euler equation is

d d
Ly — @Ly’ = %(29//333) =0
Thus
y(zr) = Az* + B
(b) The Euler equation is
y// —y ="

The general solution is

3. The Euler equation is

d d fy
%Ly/:fy 1+ (y')? — =0

A T ()2

Taking the total derivative and then multiplying by /1 + (y)? gives

Ly, —

e gt f(yl)2y// o
This reduces to o
’ Yy
_ A —
4. The Euler equation is
d
——L, =0
dx Y
or ,
Y

/14 (y')?

Solving for y' (take the positive square root since, by the boundary con-
ditions, we want y’ > 0), separating variables, and integrating yields

c2z?
12,2 dr + k

Then make the substitution u = 1 — c222 to perform the integration. We

obtain 1
ylz) = -vV1—-c22+k
c

Applying the boundary conditions to determine the constants finally leads

to
ylx) =—=Vb—a2+2

which is an arc of a circle.
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5. Notice that, by expanding, combining terms, and using the Euler equation,

J(Y +h) — J(Y)

b
/ [2pY'R + 2qY h + ph'* + qh?|dx

\%

b
/[QpY’h’—i-Qth]dax
‘ b
= 2pY'h|} - / [(2pY")' h — 2qY h]dx
= 0.

The last two lines follow from integration by parts and the fact that Y
satisfies the Euler equation

(pY") —qY =0.

6. Let h € C2. Then
b b
51 = [ [ K Olbh) + hs)yo)ds i
+2 / L Oh(0)dt — 2 / ' (o) F o)t

Now, using the symmetry of K and interchanging the order of integration
allows us to rewrite the first integral as

2 / ’ / " K (s tyy(s)h(0)dsdt

Then
b b
5y, h) =2 / ( / K (s, t)y(s)ds + y(t) — f(t)> ()t

Thus ,
/ K(s,)y(s)ds + y(t) — £(t) = 0

This is a Fredholm integral equation (see Chapter 4) for y.

7. The Euler equation is
—((L+ax)y) =0
or
Yy =ca/1+2)

Integrating again
yx)=crln(l+z)+c2
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If y(0) =0, y(1) = 1 then we get

In(1+ z)

y(z) = 2

If the boundary condition at = 1 is changed to y'(1) = 0, then the
extremal is y(z) = 0.

. In each case we minimize the functional T'(y) given in Example 3.18 on

page 174.

(a) When n = kz the Lagrangian is independent of y, and therefore the
Euler equation reduces to

/1492 =C.

Separating variables and integrating gives

/ _ 72
y:/ Olex d.’L'"_CQ.

The right hand side can be integrated using a trigonometric substi-
tution.

(b) The integrand is independent of x.
(¢) The integrand is independent of x.

(d) This problem is similar to the brachistochrone problem (see Example
3.17).

. Observe that

AL~ ,dL,

d
L,——(L—-vy'L, = L;— — — "' Loy
t— (L —yLy) v Ty YL
’ " /dLy/ "
= Li— L — Lyy — Lyy +yw+yLy/
d
= *y,(Ly - %Ly')

The minimal surface of revolution is found by minimizing

b
J(y) = / 2y /14 (y')da
a
Because the integrand does not depend explicitly on z, a first integral is
L—y'Ly,=c
Upon expanding and simplifying, this equation leads to

dy
29 k22 — 1
dx y
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11.

12.

13.

14.
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Now separate variables and integrate while using the fact that

1
-1
T cosh™ u = 7112 =

The Euler equation becomes
.%'21/” + 2xy' —y=0
which is a Cauchy-Euler equation. Its solution is

y(x) = Ap(C1HVE)/2 L Ba(=1-V5)/2

(recall that a Cauchy-Euler equation can be solved by trying power func-
tions, y = ™ for some m).

To find Euler’s equation, use the fact that L is independent of z and
therefore L —y' L, = C.

Using the Euler equation it is straight forward to see that the extremal
is Y = 0, giving the value J(Y) = 4. Take, for example, y = sinmz.
Then J(y) > 4. Hence, Y = 0 does not give a local maximum. Because
the extremals are only necessary conditions, there is no guarantee that
Y = 0 provides a minimum either. Note also that, for any y, we have

J(y) = 12 + (v — 2)?] da > 0.

Substitution of r into the integral gives the variational problem

T
E(y) :2/ e P\ ay —y dt — max.
0

The Euler equation is

1-53 d 1

— = 0.
Vay—y  dtJay —yf

This simplifies to
Yy 4+ (4268 —2)y +2a(1 — B)y =0,

which is a linear equation with constant coefficients.

3.4 Generalizations

Exercises, page 184

1.

(a) The Euler equations are

Sy1 —yy =0, 2y —yi =0.
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()
(d)
()

Eliminating y, gives
4
Y — 16y, = 0.
The characteristic equation is m* — 16 = 0, which has roots m =
+2, +2i. Therefore the solution is
y1(x) = ae®® + be " + ccos 2z + dsin 2,
where a, b, ¢, d are arbitrary constants. Then yo = 0.5y, and the four
constants a, b, ¢, d can be computed from the boundary conditions.
The Euler equation is
y =0,

and thus the extremals are

y(x) = a+ b + ca? + da®.
The four constants a, b, ¢, d can be computed from the boundary con-
ditions.
The Euler equation is y* — 2y +y = 0.
The Euler equation is y®* = 0.
The Euler equation is y®* — y3) — ¢ —y = 0.

2. The Euler equation for J(y) = [ L(z,y,y',y")dz is

If L,

If L,
show

Ly - (Ly’)/ + (Ly”)n =0
= 0 then clearly
Ly/ — (Ly//)/ = const.

= 0, then expand all the derivatives and use the Euler equation to

d
L= Ly — (Lyr) =y L)) =0

3. The Euler equation is

or

d d
Ly — —Lyy =2a(aM — M’ — —2(aM — M) =
M dx M a(a b)+d(E (CL ) 07

M" — a®>M = —ab.

The general solution is

b
M(t) = Ae™ + Be ™ + =
a

The left boundary condition is M (0) = Mp; the right boundary condition
is the natural boundary condition Ly, =0 at ¢t =T, or

aM(T) — M'(T) = b.
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4. The two Euler equations (expanded out) are

Ly/y/yl/ + Ly/Z/Z// = O
Lz’y’y// + Ly/Z/Z” = 0

It is given that the determinant of the coefficient matrix of this system is
nonzero. Therefore the only solution is y” = 2" = 0, which gives linear
functions for y and z.

5. (a)

The natural boundary condition is 3'(1) + y(1) = 0. The extremals
are
y(z) = ae® + be™ "

. The boundary conditions force a+b=1and a =0, so y(z) =e

The Euler equation is
v 42 +y =0,
giving extremals
y(x) = ae™" 4+ bre™".
The boundary conditions are y(0) = 1 and y/(3) = 0.

The Euler equation is

1
2y + 22y + 1y =0,

which is a Cauchy-Euler equation. Assuming solutions of the form
y =t gives the characteristic equation

1
m(m—l)—i—Qm—i—ZZO7

which has a real double root m = —%. Thus the general solution is

1 1
y(x) = aﬁ + bﬁ Inx.

The given boundary condition is y(1) = 1; the natural boundary
condition at = e is y'(e) = 0. One finds from these two conditions
that a =b=1.

The Euler equation is
yl/ _ 2y/ — 71.

The extremals are
y(x) = ax +b.

The boundary conditions are y(0) = 1 and y'(1) + y(1) = 0.



3.5. THE CANONICAL FORMALISM 51

6. The natural boundary condition is
Ly (b,y(b), 5/ (b)) + G'(y(b)) = 0.

7. The Lagrangian is L = y/1 — k2 + y'2 — ky/, where 0 < k < 1. It does not
depend on x, and therefore a first integral is

/

Y _
\/T—_y/ﬁk—a

Solving gives y(z) = Az + B. Now y(0) = 0 forces B =0 and y(z) = Ax.
Now apply the natural boundary condition L;/ =0at z=0b. We get

Yy A
- k= 4+ k=0.
VI— k2 =y VI—k2—A

RO —k)
A==V "5

8. The natural boundary condition is (see Problem 6)

This gives

9y'(2) + 9y(2) = 2.

3.5 The Canonical Formalism

Exercises, page 196

1. The Hamiltonian is

Hamilton’s equations are
’ p /
V=50 P a(t)y

2. Here we have

1w = [VEFATT P
We find

V2 + Py
p=Ly= a2
1+ ()
which yields
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The Hamiltonian simplifies, after some algebra, to

H(tay7p):_\/t2+y2_p2

Then Hamilton’s equations are

dy P dp Yy

dt /t2+y27p2’ dt /12 1 42 — p2
Dividing the two equations gives

dy _p

dp vy
Integrating yields
y2 — p2 = const

These are hyperbola in the yp phase plane.

3. Hamilton’s equations for the pendulum are

0 = %, p' = —mglsind
m

4. (a) The potential energy is the negative integral of the force, or

1

1
Viy) =— /(*wa + ay®)dy = 5w2y2 - gay?’

The Lagrangian is L = %m(y’)2 —V(y). The Euler equation coincides
with Newton’s second law:

"n__

my’ = —w?y + ay?

(b) The momentum is p = L,, = my’, which gives y’ = p/m. The
Hamiltonian is

H(y.p) = 5(p/m)? + V(1)

which is the kinetic plus the potential energy, or the total energy of
the system. Yes, energy is conserved (L is independent of time).

(¢) We have H = F for all time ¢, so at ¢ = 0 we have

S(0(0)/m)? + V(y(0)) =

If y(0) = 0 we can solve for p(0) to get the momentum at time zero;

but this gives
y'(0) = £y/w?/5m
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(d) The potential energy has a local maximum at y = w?/a and is equal

to
6

Vinae = V(w?/a) = g?
Note that V = 0 at y = 0,3w?/2a. If E < Ve then we obtain
oscillatory motion; if £ > V4., then the motion is not oscillatory.
Observe that the phase diagram (the solution curves in yp—space, or
phase space), can be found by graphing

p=22m(E — V(y)
for various constants E.

5. The Euler equations are

d d
Fy—aFy/ :O7 Fp—%Fp' :O,
where F' = py’ — H(t,y,p). Easily we find from these two equations that
d /
—Hy—%pzo, y — Hp,=0.

6. Here the force is F(t,y) = ke'/y?. We can define a potential by V (t,y) =
— [ F(t,y)dy = ke'/y. The Lagrangian is

m
L(ta Y, y/) = E(y/)Q - V(ta y)
The Euler equation is
my" — ket /y? =0
which is Newton’s second law of motion. The Hamiltonian is

Pk

H(t = —e*
(t.y,p) =5+ "
which is the total energy. Is energy conserved? We can compute dH/dt
to find dE
— = ke 0
o = ke /y#

So the energy is not constant.

7. The kinetic energy is T = m(y’)?/2. The force is mg (with a plus sign since
positive distance is measured downward). Thus V(y) = —mgy. Then the
Lagrangian is L = m(y’)%/2 + mgy.

8. We have, for example,

LA, v

¢ dt ‘ 8:172 dt

or
"o
mx; = Fj.
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10.
11.

12.
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We have ' = —a and so r(t) = —at + [. Then the kinetic energy is

T =S (") +7r%(0)) = S (@ + (1 = at)*(¢)?),

and the potential energy is
V =mgh =mg(l —rcosf) =mg(l — (I — at) cosb.)

The Lagrangian is L = T — V. The Euler equation, or the equation of
motion, is
gsind + (I — at)d” — 206 = 0.

One can check that the Hamiltonian is not the same as the total energy;
energy is not conserved in this system. If fact, one can verify that

%(T—i—V) = —mgacosf # 0.

Follow the instructions.

The Emden-Fowler equation is
Y’ + %y’ +y°=0.
Multiply by the integrating factor ¢2 to write the equation in the form
(t*y") +t2y° = 0.
Now we can identify this with the Euler equation:
L,=—ty°, L, =t

Integrate these two equations to find

1 1
L= 5752(?9/)2 - 6t2y6 + o(t)

Multiply y” + ay’ + b = 0 by the integrating factor exp(at) to get
(eaty/)/ + beat =0

Now identify the terms in this equation with the terms in the Euler equa-
tion as in Exercise 5.14. Finally we arrive at a Lagrangian

L=e (%(y’)2 -~ by)

There are many Lagrangians, and we have chosen just one by selecting
the arbitrary functions.
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13. Follow Example 3.27 in the book with m, a, k and y replaced by L, R, C~!
and I, respectively.

14. Multiplying the given equation by exp P(t) makes the sum of the first two
terms a total derivative and we get

d, r@,
() + " f(y) =0,

Comparing to the Euler equation we take
Ly =e"Of(y), Ly =—e"0y.

Integrating the first gives

L=e"DF(y) + (1),
where ¢ is arbitrary. Plugging this into the second equation we get

by = —ePMy

Integrating,

6=~y 1 y(t)

where 1 is arbitrary. Thus,

L= (P - 557) + 010

3.6 Isoperimetric Problems

Exercises, page 203
1. Form the Lagrangian
L* — (y/)2 4 )\yQ
The Euler equation reduces to
y' =My =0, y(0)=y(r)=0
The extremals are given by
yn(x) = £/2/msinne, n=1,2,3,....

2. Let L* = 2% + (v/)? + \y?. Then the Euler equation for L* is

Y+ Ay =0, y(0)=y()=0.

If A > 0 then this boundary value problem has only trivial solutions. If
A <0, say A = —32, then the problem has nontrivial solutions

yn(z) = Bysinnmx, n=1,2,...,



56

CHAPTER 3. CALCULUS OF VARIATIONS
where the B,, are constants. Applying the constraint gives
1
/ B2 sin® nrx dr = 2.
0

Thus B,, = £2 for all n. So the extremals are

yn(z) = £2sinnmrx, n=1,2,....

. The Euler equations become

Lyl - %L@h = O’ Lyz - %Lyz = O’

where L* = L + \G.

. Form the Lagrangian

L* =zy' —ya’ + 2/ (') + ().

Because the Lagrangian does not depend explicitly on ¢, a first integral is
given by
L*—a'L: —y'Lxy = C.

. The problem is to minimize

J(y) = / VIT @)z, y(0) = y(1) =0

subject to the constraint

1
/ y(zx)dz = A.
0
Form the Lagrangian

L= VIT P +

Because the Lagrangian does not depend explicitly on x, a first integral is
given by
L* —y' Lxy = c.

Expanding out this equation leads to

/_ 1_()‘9_0)2
v V' Qw—0o?

Separating variables and integrating, and then using the substitution u =
1— (\y —¢)?, gives
1 du
22 ) Vu

=x 4.
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Thus

(o4 1 + (g = /N = 55,

which is a circle. Now the two boundary conditions and the constraint
give three equations for the constants c, cy, A.

6. Form the Lagrangian
L* =p(y)? +ay* + Ary.
Then the Euler equation corresponding to L* is
Ly — (Ly) = 2qy +2riy —2(py')’ = 0,
or

(py') —ay =1y, yla)=y(b) =0
This is a Sturm-Liouville problem for y (see Chapter 4).

7. Solve the constraint equation to obtain

z=yg(t,y).
Substitute this into the functional to obtain
b b
W(y) = / F(ty,y) = / L(t,y, 9(t,y), Y. gt + gyy')dt.
Now form the Euler equation for F'. We get
d
Fy— 2 Fy =0,
or, in terms of L,
, d
Ly,+ L.gy + LZ’(gty + GyyY ) — %(Ly/ + Lz’gy) =0.
This simplifies to
d d
— — L, L,——L, =0.
Also G(t,y,9(t,y)) =0, and taking the partial with respect to y gives

Ly

Gy +G.gy=0.

Thus 4 J
Ly — aily _ L — gle
Gy Gy .

Now these two expressions must be equal to the same function of ¢, that
is

d d
Ly = =Ly =Gy, L~ 2 Lo = N$)G..



