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e nt'-Term Test: Consider the series Z . Then
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Therefore the series diverges by the n'-Term Test since the limit of the summands
does not equal zero. Note that we are allowed to use L’Hospital’s Rule here since

lim 3" = lim (1 +3") = co.
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n®-Term Test: Consider the series Z cos(n). Note lim cos(n) # 0 since the limit
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does not exist. Thus the series diverges by the n'"-Term Test.
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Integral Test: Consider the series Z
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and so > (0. Thus our summands are positive.
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Now observe that
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since n? + 2n + 2 > 1 + n?. Therefore our summands are decreasing as well as be-
ing positive. Thus we may use the Integral Test by observing the improper integral

/ ! dz. Recall
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Therefore the improper integral / dx converges. Thus by the Integral Test,
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the series converges as well.
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o Integral Test: Consider the series Z Observe that n > 2 and so In(n) > 0

and so > (0. Thus our summands are positive.
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Now observe that
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(n+1)In(n+1) nln(n+1)+In(n+1) = nln(n)

since nln(n 4+ 1) + In(n + 1) > nln(n). Thus our summands are decreasing as well
as positive. Thus we may use the Integral Test by observing the improper integral

/ L dz. Recall
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Therefore the improper integral dx diverges. Thus by the Integral Test,
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we know that the series Z diverges as well.
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p-Test: The series Z — diverges by the p-Test since 3 <1
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Geometric Series: Consider Z(—?))_". Observe that (—3)™" = (—g) and the
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series E —3 converges since —3 < 1. Specifically, we know that the series
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converges to ————— = —.
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Geometric Series Test: Consider E <——) . This series diverges since )——‘ > 1.
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—1 < cos(n) < 1 and therefore —2 < cos(n) § 2 and so 3 < 5+ 2cos(n) < 7.
Therefore § < Lcos(n) < z Note that Z § diverges by the p-Test. Therefore
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Direct Comparison Test: Consider the series Z . Note that we know

diverges by the Direct Comparison Test, since it is greater than or
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equal to a positive series that diverges.
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Limit C ison Test: Consider the seri . Let
e Limit Comparison Test: Consider the series EZl % — 800t £ mf — T — 6 et s

compare this with the simpler series Z —. We see that
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Therefore the two series do the same thing. Since we already know that E —
n
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converges (by the p-Test or Integral Test), we may then conclude that the series

converges as well.
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Ratio Test: Consider the series E ((; - Then
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Thus the series converges by the Ratio Test.
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Ratio Test: Consider the series E ( . Using the Ratio Test, we can see that
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diverges. Therefore the series diverges.

Alternating Series Test: Consider the series Z(—l) . We know that n > 0
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since (n? +1)(n+1) < ((n+ 1)+ 1)n since n® +n?> + n+ 1 < n® + 2n? + 2n. Thus
the absolute value of our summands is decreasing.

and so n? 4+ 1 > 0 and so > (. Furthermore, we can see that i

Now we can use L’Hospital’s Rule to show that lim = lim — = 0. Therefore
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by the Alternating Series Test, the series converges.
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e Alternating Series Test: Consider the series Z(— —
n=2

is positive for when 2 < Z and + <1 < % for all n > 2. Therefore cos(=) is positive.
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. First note that cos(x)
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Furthermore, is then p081t1ve.
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To show that COST(L") is decreasing, let us observe that the derivative is
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Since sin(z) < cos(z) for 0 < z < Z and since + < Z for all n > 2, we know that

sin(X) < cos(2) and so sin(%) < ncos(%) and so sin(}b) — ncos(+) < 0. Therefore the
derlvatlve is negative and so our summands are decreasing.
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Now observe that lim (3) = lim cos (—) X lim — =1 x 0 = 0. Thus by the
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Alternating Series Test, E (—1)"——=~ converges.
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Absolute Convergence: Consider the series E . We know that 5| S
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Therefore Z converges by the Direct Comparison Test. Therefore Z
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converges absolutely



