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• nth-Term Test: Consider the series
∞∑
n=1

3n

1 + 3n
. Then

lim
n→∞

3n

1 + 3n
L’H
= lim

n→∞

ln(3)3n

ln(3)3n
= lim

n→∞
1 = 1 6= 0.

Therefore the series diverges by the nth-Term Test since the limit of the summands
does not equal zero. Note that we are allowed to use L’Hospital’s Rule here since

lim
n→∞

3n = lim
n→∞

(1 + 3n) =∞.

• nth-Term Test: Consider the series
∞∑
n=1

cos(n). Note lim
n→∞

cos(n) 6= 0 since the limit

does not exist. Thus the series diverges by the nth-Term Test.

• Integral Test: Consider the series
∞∑
n=1

1

1 + n2
. Observe that n2 > 0 and so 1 +n2 > 0

and so
1

1 + n2
> 0. Thus our summands are positive.

Now observe that
1

1 + (n+ 1)2
=

1

n2 + 2n+ 2
<

1

1 + n2

since n2 + 2n + 2 > 1 + n2. Therefore our summands are decreasing as well as be-
ing positive. Thus we may use the Integral Test by observing the improper integral∫ ∞
1

1

1 + x2
dx. Recall

∫ ∞
1

1

1 + x2
dx = lim

b→∞
arctan(x)]b1 =

π

2
− π

4
=
π

4
.

Therefore the improper integral

∫ ∞
1

1

1 + x2
dx converges. Thus by the Integral Test,

the series
∞∑
n=1

1

1 + n2
converges as well.
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• Integral Test: Consider the series
∞∑
n=2

1

n ln(n)
. Observe that n ≥ 2 and so ln(n) > 0

and so
1

n ln(n)
> 0. Thus our summands are positive.

Now observe that

1

(n+ 1) ln(n+ 1)
=

1

n ln(n+ 1) + ln(n+ 1)
<

1

n ln(n)

since n ln(n + 1) + ln(n + 1) > n ln(n). Thus our summands are decreasing as well
as positive. Thus we may use the Integral Test by observing the improper integral∫ ∞
2

1

x ln(x)
dx. Recall

∫ ∞
2

1

x ln(x)
dx = lim

b→∞
ln(ln(x))]b2 =∞.

Therefore the improper integral

∫ ∞
2

1

x ln(x)
dx diverges. Thus by the Integral Test,

we know that the series
∞∑
n=2

1

n ln(n)
diverges as well.

• p-Test: The series
∞∑
n=1

1

n
1
2

diverges by the p-Test since
1

2
≤ 1.

• Geometric Series: Consider
∞∑
n=0

(−3)−n. Observe that (−3)−n =

(
−1

3

)n
and the

series
∞∑
n=1

(
−1

3

)n
converges since

∣∣∣∣−1

3

∣∣∣∣ < 1. Specifically, we know that the series

converges to
1

1− (−1
3
)

=
3

4
.

• Geometric Series Test: Consider
∞∑
n=0

(
−π
e

)n
. This series diverges since

∣∣∣−π
e

∣∣∣ ≥ 1.

• Direct Comparison Test: Consider the series
∞∑
n=1

5 + 2 cos(n)

n
. Note that we know

−1 ≤ cos(n) ≤ 1 and therefore −2 ≤ cos(n) ≤ 2 and so 3 ≤ 5 + 2 cos(n) ≤ 7.

Therefore
3

n
≤ 5 + 2 cos(n)

n
≤ 7

n
. Note that

∞∑
n=1

3

n
diverges by the p-Test. Therefore

∞∑
n=1

5 + 2 cos(n)

n
diverges by the Direct Comparison Test, since it is greater than or

equal to a positive series that diverges.
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• Limit Comparison Test: Consider the series
∞∑
n=1

2n2 + 60n+ 1

3n5 − 800n4 + n3 − 7n− 6
. Let us

compare this with the simpler series
∞∑
n=1

1

n3
. We see that

lim
n→∞

(
2n2 + 60n+ 1

3n5 − 800n4 + n3 − 7n− 6

)
/

(
1

n3

)
= lim

n→∞

(
2n5 + 60n4 + n3

3n5 − 800n4 + n3 − 7n− 6

)
=

2

3
> 0.

Therefore the two series do the same thing. Since we already know that
∞∑
n=1

1

n3

converges (by the p-Test or Integral Test), we may then conclude that the series
∞∑
n=1

2n2 + 60n+ 1

3n5 − 800n4 + n3 − 7n− 6
converges as well.

• Ratio Test: Consider the series
∞∑
n=1

(n!)2

(2n)!
. Then

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣ ((n+ 1)!)2

(2(n+ 1))!
· (2n)!

(n!)2

∣∣∣∣ = lim
n→∞

∣∣∣∣(2n)!(n+ 1)!(n+ 1)!

(2n+ 2)!(n)!(n)!

∣∣∣∣
= lim

n→∞

∣∣∣∣ (2n)!

(2n+ 2)!
· (n+ 1)!

n!
· (n+ 1)!

n!

∣∣∣∣ = lim
n→∞

∣∣∣∣ (n+ 1)(n+ 1)

(2n+ 2)(2n+ 1)

∣∣∣∣ =
1

4
< 1.

Thus the series converges by the Ratio Test.

• Ratio Test: Consider the series
∞∑
n=1

n!

(n+ 1)22n
. Using the Ratio Test, we can see that

lim
n→∞

∣∣∣∣ (n+ 1)!

(n+ 2)22n+1
· (n+ 1)22n

n!

∣∣∣∣ = lim
n→∞

∣∣∣∣(n+ 1)(n+ 1)2

2(n+ 2)2

∣∣∣∣
diverges. Therefore the series diverges.

• Alternating Series Test: Consider the series
∞∑
n=1

(−1)n
n

n2 + 1
. We know that n > 0

and so n2 + 1 > 0 and so
n

n2 + 1
> 0. Furthermore, we can see that n+1

(n+1)2+1
< n

n2+1

since (n2 + 1)(n + 1) < ((n + 1)2 + 1)n since n3 + n2 + n + 1 < n3 + 2n2 + 2n. Thus
the absolute value of our summands is decreasing.

Now we can use L’Hospital’s Rule to show that lim
n→∞

n

n2 + 1
= lim

n→∞

1

2n
= 0. Therefore

by the Alternating Series Test, the series converges.
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• Alternating Series Test: Consider the series
∞∑
n=2

(−1)n
cos( 1

n
)

n
. First note that cos(x)

is positive for when x ≤ π
2

and 1
n
< 1 < π

2
for all n ≥ 2. Therefore cos( 1

n
) is positive.

Furthermore,
cos( 1

n
)

n
is then positive.

To show that
cos( 1

n
)

n
is decreasing, let us observe that the derivative is

1

n3
sin

(
1

n

)
− 1

n2
cos

(
1

n

)
=

sin( 1
n
)− n cos( 1

n
)

n3
.

Since sin(x) < cos(x) for 0 < x < π
4

and since 1
n
< π

4
for all n ≥ 2, we know that

sin( 1
n
) < cos( 1

n
) and so sin( 1

n
) < n cos( 1

n
) and so sin( 1

n
)− n cos( 1

n
) < 0. Therefore the

derivative is negative and so our summands are decreasing.

Now observe that lim
n→∞

cos( 1
n
)

n
= lim

n→∞
cos

(
1

n

)
× lim

n→∞

1

n
= 1 × 0 = 0. Thus by the

Alternating Series Test,
∞∑
n=2

(−1)n
cos( 1

n
)

n
converges.

• Absolute Convergence: Consider the series
∞∑
n=1

cos(n)

n2
. We know that

∣∣∣∣cos(n)

n2

∣∣∣∣ ≤ 1

n2
.

Therefore
∞∑
n=1

∣∣∣∣cos(n)

n2

∣∣∣∣ converges by the Direct Comparison Test. Therefore
∞∑
n=1

cos(n)

n2

converges absolutely.
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