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1. Patus, CYCLES, AND WHEELS

We continue some leftover material from the matching complex group’s spring semester work.
First we reproduce the results on homology for paths with a different method. Then we do some
work with wheel graphs.

Definition 1.1. Let G = (V, E) be a graph. Then if S C V, G[V — 5] is the subgraph of G induced
by the vertex set V — S

Definition 1.2. The matching complezx of a graph G is the simplicial complex whose elements are
subgraphs of G in which no edge shares a vertex. We denote the matching complex as M (G)

Recall the following long exact sequence and theorem:

Theorem 1.3. For any graph G and a fixed edge 12 in the edge set of G, the following long se-
quence 1s exact,

B Ha( @ MGV - (1,2.00) % H(M(G) 5 Hea @ MGV — {1,24,3)
a,t 4,J
) .
% Heao( @ MGV — {1,2.3) % -
The sum @, ; M(G[V —{1,2,i}]) is over all edges ai where a € {1,2} and i € {3,...,n}. The
sum €9, ; M(G[V —{1,2,4,j}]) is over all pairs of edges 1i,2j such that i # j € {3,...n}.
We also had the following theorem as a direct result [I, Theorem 11.42]:

Theorem 1.4. Let v, = L"T_QJ, then the homology for the matching complex for the path graph on
n vertices P, when n = 0,2 mod 3 is

HiMpy) =10 YiFwm
Z ifi=uv,
When n =1 mod 3,
H;(MP,)=0

for all

We provide a proof of by using[l.3| proven in the other matching complex report. The original
proof used decision trees and gave us the topological realizations of the complex but we would just
like to demonstrate and check the exact sequence works with paths.

Proof. We use induction. The first cases for n = 0,1, 2,3 are trivial or easily checked. Then for
P, label the vertices such vertex 1 has degree 1 and vertex ¢ is adjacent to vertex ¢ — 1 and 7 + 1
for 1 < ¢ < n. Then vertex 1 has no neighbors other then vertex 2 and vertex 2 only has one
neighbor, vertex 3, other then vertex 1 so the sums from D, MGV —{1,2,i}]) = MP,—3
and @, ; Hi—2(M(G[V —{1,2,4,j}])) is trivial and so will have homology 0 everywhere in our long
exact sequence. So then we get that H;_1(MP,_3) = H;(MP,) and in particular it is nonzero
when H,,, ,(MP,_3) = H,,_1(MP,_3) = H,, (MP,). O
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Now we prove a statement on vertex decomposability of Wheel Graphs. We use the following
definitions found in the previous matching complex report. Then we define a new graph which will
be the wheel graph and cycle graph in special cases.

Definition 1.5. Given a simplicial complex A and an element ¢ € A, we define the following,
(1) linka(o) ={r € AlrNo=0and TUc € A}
(2) dela(o) ={r € AlrNno =0}
(3) fdela(o) ={T € Alo ¢ 7}
Definition 1.6. We define the class of vertez-decomposable (VD) lifted complexes recursively as
follows[Il, Definition 3.27]:
(1) Every simplex (including () and {0} is VD).
(2) If A contains a vertex v such that A(v,0) and A(@,v) are VD of the same dimension, then A
is also VD.
(3) If A is a cone over a VD complex A’ then A is also VD.
(4) If A=Y {0} and ¥ is VD, then A is also VD.

This is defined for general complexes. Moreover, we say a complex is VD(d) if the d-skeleton is
V' D. There is an important lemma about this class of complexes.

Lemma 1.7. Let A be a lifted complex and let v be a vertex. If links(v) is VD(d-1) and dels(v) is
VD(d), then ¢ is VD(d).

We will use a previous result found in Johnson [I, Theorem 11.42, 11.43] which the following is
a part of

Theorem 1.8. Let v, = L"de, both the cycle graph C,, and the path graph P, are V D(vy,)
Then we define a new graph which will connect wheel graphs and cycles.

Definition 1.9. Let n > 4 and 0 < k < n. Then construct the following graph, take a cycle of
n — 1 vertices and label the vertices such that (i — 1)i and i(i + 1) are edges modulo n — 1. Then
have a additional vertex labeled n and an edge i(n 4 1) for all i < k. Call this graph WP

Notice that W,? is the cycle graph on n — 1 and an additional vertex. The matching complex is
the same as the for the matching complex of C),—1. Also W,?_l is the wheel graph on n vertices.

Theorem 1.10. Let v, be the same as the one for cycle graphs and paths in Theorem |1.4 WK is
VD(vp—1).

Proof. We use induction. For the base case as explained above MW? = MC,,_1 so it is VD (v,_1).
Then for k > 0, choose edge kn in graph W}. Then linky px (kn) = M P, — 2 which is V. D(v;,—2)

so it is VD (vp—1 — 1) as well, and delyy pk (kn) = MW =1 which is V D(v,_1) by induction. So by
WPk and in particular the wheel graph is VD (v,_1). O

We are able to derive the desired results for the homology of the wheel graph. We will use decision
trees to find the number of evasive sets and that will tell us information about our complexes. We
will use the W* graph defined in definition

Definition 1.11. [Il Definition 5.1] The class of element-decision trees, each associated to a finite
family of finite sets, is defined recursively as follows:

(1) T = Win is an element-decision tree on () and on any 0-simplex {0, {v}}.

(2) T = Lose is an element-decision tree on {(}} and on any singleton set {{v}}.

(3) If A is a family of sets, if x is an element, if T is an element-decision tree on dela(x), and if
T; is an element-decision tree on linka (z), then the triple (x, Ty, T1) is an element-decision
tree on A.



Then we can define a non-evasive (and evasive) set.

Definition 1.12. [I p.70] Given a simplicial complex A and a decision tree T of A, a set 7 € A
is nonevasive if any of the following hold

(1) T = Win

(2) T = (x,Tp,T7) for some x ¢ 7 and 7 is nonevasive with respect to Tp.

(3) T = (z,Tp,T1) for some x € 7 and T — z is nonevasive with respect to 77.

A simplex is evasive if it is not non-evasive. We can replace the nonevasive with evasive in
condition (2) and (3) and it will still hold.

Then the following theorems from Forman’s work on Morse Theory will be useful. These form
of the theorems are taken from Jonnson’s work [I] but is originally from Forman’s paper[2]. We
further modified the language in places since we are just working with simplicial complexes.

Definition 1.13. Given a simplicial complex A we say M is a matching on A if the elements of
M are pairs of simplicies of A such that each simplex is in at most one pair and each pair is of
form (o,7) where 0,7 € Aand r=0cUuxz, z ¢ 0.

We call simplices that are unmatched in a matching of a simplicial complex critical or unmatched.

Then given a matching M of A, we can draw a graph whose vertices are simplices and there is
an edge between o and 7 if 7 = o Uz for some = ¢ o. Then for all edge pairs in the matching
M, orient the edge as (o,7). For all remaining edges orient it as (7,0). We say a matching is
acyclic if there is no directed cycle ey, es, ..., €, such that for all i € [n], e; only contains simplices
of dimension k and k + 1 for some k.

Theorem 1.14. [I, Theorem 5.2] Let A be a simplicial complex and T a decision tree of A. Then
there is an acyclic matching on A such that the critical sets are precisely the evasive sets in A
with respect to T. Furthermore A is homotopy equivalent to a CW complex with exactly one cell of
dimension p for each evasive set in A of dimension p and one additional 0-cell.

The following theorem is particularly useful in our case and will give us a lot of information
about matching complexes of wheel graphs.

Theorem 1.15. [I, Theorem 4.8] Let A be a simplicial complex. If all critical faces of A are of
the same dimension d, then A is homotopy equivalent to a wedge of spheres of dimension d.

Theorem 1.16. [I, Corollary 4.6] If a simplicial complex A does not contain any critical faces,
then A is collapsible and hence contractable to a point.

By the number of spheres wedged together by is the same as the number of critical
points. Furthermore the homology of spheres and spheres wedged together are known.

Theorem 1.17. The homology of an n-dimensional sphere S™ is

N

The wedge of parts under taking homology will be a direct sum of the homology of the parts. In
particular the homology of a wedge of spheres is the sum of the homology of each individual sphere

The following is part of the proof for the homology of matching complexes for paths P, and
cycles Cp 1, Theorem 11.42,11.43].

Theorem 1.18. There exists an element decision tree for M P, such that there is one evasive
simplex of dimension v, when n = 0,1 mod 3 and no evasive faces when n =2 mod 3
Furthermore there exists an element decision tree for MCy,, such that there is one evasive simplex
of dimension v, for n = 1,2 mod 3 and two evasive faces of dimension v, when n =0 mod 3.



Now we will prove the homology results for wheel graphs. For notation we mark the wedge of k
copies of some space X as X"k,

Proposition 1.19. For n > 3, kK <n, and v, = L%J,

Sv» A SY"  when n =1 mod 3
MWk = { (8v)"+1 when n = 0 mod 3
(Svn)"=1 " when n = 2 mod 3

We let (S»)"? be a point.

Proof. Label the vertices of W’ as in Definition We use induction on k up to the value of n—1.

First we consider when n = 1 mod 3. We get an element decision tree of MW, as (1n, Ty, T),
with Ty an element decision tree for dela(ln) = M Wg = MC,_1 and T} an element decision
tree for linka(1n) = M Pay,—2. From Theorem we know there is a decision tree 77 with no
evasive sets since n — 2 = 2 mod 3 and T with two evasive sets of dimension v, = v,_1 since
n—2=0mod 3. So MW, will have two evasive faces dimension v,

Then for MW}, we get the element decision tree (kn, Ty, T1) where Ty is an element decision tree
for dela(1n) = MWE=! and T} is an element decision tree for linka(1n) = M Pa,_5. There exists
a 717 that also has no evasive sets again and by induction Ty has two evasive sets of dimension v,,.
Then by Theorem there are exactly two critical simplicies of dimension v, and Theorem [1.15
gives us the Proposition.

For n = 0 mod 3, we get an element decision tree of MW, as (1n, Ty, T1), with Ty an element
decision tree for dela(1n) = MW? = MC,,_; and T; an element decision tree for linka(1n) =
M Pa,,_o again. This time there exists Ty that has one evasive set of dimension v,_1 = v, and T3
that has one evasive set of dimension v,,_2 = v, — 1. Then if 7 is an evasive set of 17 then 7 + 1n
is an evasive set of MW,}. So MW,! has 2 evasive sets of dimension v,,.

Then for MW}, we again get the element decision tree (kn,Tp,T) where Tp is an element
decision tree for dela(1n) = MW/~1 and T} is an element decision tree for linka(1n) = M Pa,_».
M W,]f_l will have a tree with k evasive sets dimension v, and M Pa,,_s will have a tree with an
evasive set of dimension v, — 1 again. Then by the same argument for the base case MW} will
have k + 1 evasive sets dimension v,. and again will give us the proposition.

Finally consider n = 2 mod 3. We will use a different decision tree for MW, this time. We look
at edge 12 instead of 1n. Then we get an element tree of MW}, (12, Ty, Ty), where Tp is an element
decision tree for dela(12) = MP, and T} is an element decision tree for linka(12) = M Pa,_s.
Then since n = n — 3 = 2 mod 3, by we know there is a tree with no evasive sets. So MW}
collapses to a single point.

The rest of the proof follows as before. We get the element decision tree (kn,Ty,T1) where
Ty is an element decision tree for dela(1n) = MW}F~! and Ty is an element decision tree for
linka(1n) = M Pa,_3. The tree for MW}~! this time has k — 2 evasive sets of dimension v,, and
the exists a tree for M Pa,_o has one with dimension v, — 1 = v,_2. Put them together to get
k — 1 evasive sets dimension vy,,. O

Then we get homology results as a direct corollary using [1.17]

Corollary 1.20. Forn >3 and k <n v, = L%J, forn=1 mod 3

72 i=wv,
0 else

Forn =0 mod 3,

Zk+1 — ZSvn+3 i = Un,

0 else



Forn =2 mod 3,

ZFL =73 =
Hl(MW/;) - {O else '

Proof. When n =0 mod 3, k+ 1= 3v, +3 and when n =2 mod 3, k — 1 = 3v, O

Now we wish to write code that will compute if a set is evasive given a decision tree. Recall in
Definition we defined a decision tree inductively from the top down. So if we have a order-
ing of the O-dimension simplicies, then it will define a decision tree. For example if we have a 3
0-dimensional simplicies, then if we have order 0,1,2 then we get a tree of the simplicial complex
by decomposing as (0,7p,71). Then in the next step we would decompose the tree as (1,7, T1),
and so on.

So first we will write code that will take a simplicial complex, order and a simplex as input and
give us a boolean output on if it is evasive or not. We introduce another type of decision tree to
make this a little easier. We replace the elements with sets and deletion with face deletion.

Definition 1.21. [I], Definition 5.3] The class of set-decision trees, each associated to a finite family
of finite sets, is defined recursively as follows:

(1) T = Win is an element-decision tree on () and on any 0-simplex {0, {v}}.

(2) T = Lose is an element-decision tree on {(}} and on any singleton set {{v}}.

(3) If A is a family of sets, if x is an element, if T} is an element-decision tree on fdela (z), and if
Ty is an element-decision tree on linka(x), then the triple (z, Ty, T1) is an element-decision
tree on A.

We define evasive sets on the tree in the same way as Definition Then we have a similar
theorem to Theorem [L.14]

Theorem 1.22. [I, Theorem 5.4] Let A be a finite simplicial complex and T be a set-decision tree
on A. Then there is an acyclic matching on A such that the critical sets are precisely the evasive
sets in A with respect to T. Conversely, given an acyclic matching M on A, there is a set-decision
tree on A such that the evasive sets are precisely the critical sets with respect to M.

So now the theorem contains a converse and we can go back and forth between set-decision trees
and acyclic matchings. In particular, we know that a simplex is topologically realized as a ball of
the same dimension. This is homotopy equivalent to a point and so it is contractable and has a
acyclic matching. This will allow us when trying to determine if a set is non-evasive to ask if the
resulting complex from taking the link or deletion is a simplex instead of empty or {0, {v}}.

The code is provided in Section

2. DECISION TREE FOR COMPLETE AND R-PARTITE MATCHING COMPLEXES

Definition 2.1. Given a graph G = (V,E) and a subset S of the edges E let G[E — S| be the
subgraph of G with the edges in S deleted. G[E — S] = G(V,E — 5)

We will also use a fact from discrete morse theory that will give us a bound for the dimension of
the homology.

Theorem 2.2. Given any acyclic matching of a simplicial complexr A, with k critical faces of
dimension i, then dim(H;(A)) <k

We will now look at decision trees of the complete graph. Let us label the verteces of the
complete graph on n vertices K,, from 1 to n. Then we will first consider edge 12. The link
will remove all edges containing vertex 1 or 2, so linkyk, (12) = M K,,_5. The deletion will give
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us M(K,(FE — {12})), the matching complex of the complete graph without edge 12. Then we
will further decompose the deletion. Next we consider edge 13 in M (K, (E — {12})). The link
will remove all edges connected to vertex 1 or 3. Notice that the edge 12 we previously deleted
from our graph would be deleted from the graph as well if it were still there. This means that
linkyr (i, (E—{12y)(13) = linky(k,)(13) = MK, 2. Then we also take the deletion again to get
M(K,(EF—{12,13})). We can continue doing this on edges 14, 15, ..., 1n and this will give a decision
tree with n — 1 copies of M,,_o and a copy of M,_1. We can then replace MK, 1 and MK, o
with their respective trees. This gives us the following by adding in trees that will minimize the
number of evasive sets of a given dimension:

Theorem 2.3. Let ev(k,n) be the minimum number of evasive sets dimension k possible from a
decision tree of MK,,. Then

dim(H;(MK,)) <ev(i,n) < (n—1ev(i —1,n—2) +ev(i,n —1)

If there is a single set decision tree such that it has ev(i,n) evasive sets of dimension i for all i
and dim(H;(MK,)) = ev(i,n), we call the complex semi-collapsible (over some field or Z). We
also call this decision tree the optimal decision tree. There are propositions however that will tell
us that complex is not semi-collapsible in most cases.

Proposition 2.4 ([1] Proposition 5.9,5.10). If a complex is semi-collapsible over Q then it is semi-
collapsible over Z. Furthermore if the complex is semi-collapsible over Q then the Z homology is
free.

We know that torsion does appear in the Z-homology of certain matching complexes so it will
not be semi-collapsible.

We can do the same process of constructing a decision tree for matching complexes of bipartite
and r-partite graphs in the same manner. Again this will give us a bound for homology in terms
of minimal evasive sets.

3. 3-PARTITE GRAPHS

We have the following partial result. For 3-partite graphs we proved that it vanishes for v, ; —1,

w,s}. We will assume for now and hopefully prove later the case when

r+s+t+1/3
—_— .

Upst = man{

2s < r +t. This is when s is the minimum and not
The following theorem gives the generators of matching complexes of complete graphs.

Theorem 3.1. [0, Lemma 2.5] Suppose n = 0,1 mod 3. Then H,_ (M,) is generated by elements
of the form

(c(1)o(2) —a(1)a(3)) A (o(4)a(5) —a(4)o(6)) A ... A(o(N —2)a(N —1) — (N —2)o(N))

where o € S, and N = 3|n/3]. Here wedge denotes concatenating disjoint elements together to
make a larger matching.

Theorem 3.2. Letr > s >t and 2s > r+t(Assume the case otherwise for now...). Then homology
of M5+ does not vanish at vy ;.

Proof. We use induction. We know that the case for s = 0 and ¢ = 0 holds. Then for r + s+t =
0,1 mod 3, we embed M, s+ into M, 4 s4¢. This can be done since K, s is a subgraph of K, 4. This
injection will induce a function Hy(M; s¢) — He(My4s1¢). So if we can find a element of Hy (M, )
whose image is the one mentioned in Theorem then we will have found a non-trivial element of
the homology group of M, s;. So we will construct the generator as follows. Let C1,Cs,Cs be the
components of the 3-partite graph K, 5. The vertices are Cy = {x1, 22, ..., 2, },Co = {y1, Y2, .., Ys }»
and C3 = {z1, 22, ..., 2t}. Then for as many vertices y; € Cy we match it with two vertices from
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either z;, 2z, € C1,C3,xj # 1, € C1, or z; # 2z, € C1,C3 so we have triples y;x; — y; 2k, %i%j — Vi%k,
Or Y;2j — YiZk-

In the case there is a single vertex v in C; or C3 left unpaired then make the triple vy; —vy; where
y; y; are unmatched vertices left in Cy. If this cannot be done then we have paired N = 3|r+s+t/3]
of our vertices and we are done.

Then there will be s — | “+* | unmatched vertices in Cy remaining if 7+t is even and s — [ 73] — 2
unmatched vertices in Cy remaining if r + ¢ is odd. Then take a vertex triple zy; — zy; already
made with y; € Cy and z,z ¢ Cy already made. Then if we have y9,y3,ys € C2 unpaired vertices
then we make the new pairings xy; — ryo and zy3 — 2y4. Then we will be unable to do this when
we have less then 3 unpaired vertices in Cy so then we will have paired N = 3|r + s +¢/3] of the
vertices. Then take the sum and we have our generator.

For the case of r + s +t = 2 mod 3 we look at the tail end of the exact sequence derived from
Theorem [1.3]

¢ p .
s H'U'r,s,t (M(G)) — Hv'r,s,tfz(@ M(G[V - {17 2’ Z’]}])) - 0
i?j
Then by induction Hy, , ,—2(€D; ; M(G[V —{1,2,i,7}])) is non-zero so Hy, ,(M(G)) must be non-
Zero. O

We now introduce more objects that will help us compute the homotopy equivalences for some
complexes. We define these objects combinatorially but will often use theorems and properties
known about their topological realization.

Definition 3.3. A cone on a x is a simplicial complex A such that each simplex o either contains
x or can be extended so that it contains x, i.e. cUx € A.

Then we know an important fact on cones

Theorem 3.4. Cones are homotopy equivalent to a point. It follows that their homology is trivial
everywhere.

4. IMPORTANT NOTES FROM REINER AND ROBERTS

Definition 4.1. A semi-group is a set with an associative binary operation. A sub-semigroup is a
subset of the semigroup closed under the binary operation of the semigroup.

Let A be a finitely generated additive sub-semigroup of N and let M C N be a finitely-generated
A-module. Consider the semigroup ring k[A] (where k is any field). Then k[A] may be identified
with a subalgebra of k[z1,...,24] generated by monomials my,...,m,. So we have the finitely
generated module M = kM over k[A] inside k[z] by taking the k-span of monomials of the form
zM with p € M. Surjecting A = k[zy...,x,] onto k[A] via z; — m;, we endow k[A] and M the
structure of finitely generated A-modules. Given p € M set [n] := {1,...,n} then we have the
simplicial complex:

zH

[Licr mi
Proposition 4.2. For any v ¢ M, Tor{ (M, k)., = 0 and we have
Tor (M, k), = Hi_1 (K k)

K, :={F Cn]| € M} where z/ := 2" ... 2¢

Now Segre(m,n,0) is the semigroup ring for the submonoid of N™ x N™ generated by the set
{(eiyej) 11 <i<mand1 < j < n} Here ey is the k' standard basis vector. Veronese(n, 2,
0) is the semigroup ring for the submonoid of N generated by {(e; + €;) }1<i<j<n. In general, for
any multidegree v in Veronese(n,2,7) the complex K, can be identified with the bounded degree
graph-complex A, whose vertices correspond to the possible loops and edges in a complete graph
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on n vertices, and whose faces are the subgraphs (with loops allowed) in which the degree of vertex
i is bounded by ~;. Here a loop on a vertex is counted as adding 2 to the degree of the vertex. (So
setting v = (1,...,1) we have A, = A,, the matching complex on n vertices’s).

Definition 4.3. The Chessboard complex with multiplicities A, s is defined to be the simplicial
complex with a vertex set of the squares on an m X n chessboard and whose simplices are the sets
of squares having no more than 7; squares from row 7 and no more than J; squares on row j.

When the weighting v = (1,...,1) the complex K, (the K, complex above with y = ) is the
matching complex A, for a complete graph on n vertices.

Proposition 4.4.

Tor™n (Segre(m,n, 1), k)(y5) = Hi-1(Ay 5: k)

Torf‘n(Veronese(n, 2,7), k), = ﬁz‘—1(A7; k)

And for |y| > 2i all torsion groups vanish. (Here A, , = k[z;;] with 1 <i<m and 1 < j <n and
A, = k[z1,...,zy], so by surjecting A,, , and A, onto the semigroup ring we give the semigroup
ring a finitely generated A,, ,-module and A,-module structure)

So if we only consider the square free multidegree’s (v,0) = ((1,...,1),(1,...,1)) and v =
(1,...,1) we have that A, 5 = A, , so we can relate the torsion groups of the Segre chain complex
to the reduced homology groups of the standard chessboard complex and similarly the torsion
groups of certain Veronese chain complexes to reduced homology groups of standard matching
complexes. However by varying these multidegree’s we get a correspondence with the chessboard
complex with multiplicities and multi-matching complex’s, respectively.

5. REPRESENTATION THEORY

Definition 5.1. The polynomial ring S = k[z1, 22, ..., x,] is multigraded by A if it has been given
a degree map deg : Z" — A.

Definition 5.2. An Associative algebra over a field k is a unital vector space A over k with
associative bilinear operation a, b — ab for a,b € A.

Definition 5.3. A Representation of an associative algebra A is a vector space V equipped with
homomorphism (action) p: A — End(V). A Subrepresentation of a representation V' is a subspace
U C V which is invariant under p(a) for all @ € A. If Vi, V5 are two representations of A then
V1 @ Vs is a representation of A.

Definition 5.4. A nonzero representation V of A is called irreducible if its only subrepresentations
are 0 and V. V is called indecomposable if it cannot be written as the direct sum of two nonzero
representations.

Proposition 5.5. Let V7, V5 two representations of an algebra A over a field. Now let ¢ : Vj — V4
be a nonzero homomorphism. Then:

(1) If V; is irreducible, ¢ is injective.

(2) if V4 is irreducible, ¢ is surjective.

Definition 5.6. A Tensor Algebra TV of a vectorspace V is defined as TV := @,v, V" with
operation a-b=a ® b. ;

Definition 5.7. (1) The Symmetric Algebra Sym(V') of a vectorspace V is TV/(v@w —w®v)
for v,w e V.
(2) The Exterior Algebra AV of a vectorspace V is TV /(v ® v) for v € V.
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Definition 5.8. Let R be a ring and G a group. A group ring R[G] or simply RG is an R-module
generated by the elements of G and consists of all finite formal R-linear combinations of elements
of GG, with multiplication defined by extending the group operation in G.

Example 5.9. Let R = C and G = C3. Then
CCs5 = {leg + z9a + 2z3a® 1 2 € C}
with addition
(211G + 200 + z302) + (w1lg 4+ waa + wsa?) = (21 + w1)lg + (22 + wo)a + (23 + w3)a?
and multiplication
(211(;+22a+23a2)(w11G+w2a+w3a2) = (zlw1+zgw3+23w2)1G+(21w2+22w1+23w3)a+(zlw3+zgfwg+23w1)a2

Definition 5.10. For a finite group G, let U be a CG-module. Let [g]: U — U such that u +— gu.
The character of U is the map
xu:G—C
such that
xu(g) = tr([g)),
the trace of [g] when represented in matrix form. Note that if p: G — GL(U) is the representation
of G corresponding to U, then

xu(g) = tr(p(g))-
For example, xy(1) = dimcU.

The character of U has some very interesting properties. Let ¢ € G be of order n, then

p(g) is diagonalizable
xv(g) is the sum (with multiplicities) of eigenvalues of p(g)
xv(g) is the sum of xr(1) n'" roots of unity

xo(g~1) = X0 (9), the complex conjugate of yur(g)

| xu(9) I< xu(1)
{z € G: xu(z) = xy(1)} is a normal subgroup of G

Definition 5.11. If A = (A1, A2, ..., ;) is such that A\; > A2 > ... > )\ and 22:1 A; = n then )\ is
a partition of n, written A - n.

Definition 5.12. Suppose A+ n. The Ferrers diagram, or shape of A is an array of n dots into [
left-justified rows with row i containing \; dots. For example, the partition (3, 3, 2, 1) has Ferrers
diagram

LN

L

(N J

[ ]

where the dot in row ¢ and column j has coordinates (i, 7).

Definition 5.13. Let A = (A1, ..., \;) F n. Then the corresponding Young subgroup of S, is
Sx = 5112001 X SO0+ 10042, A 420} X oo X S a4 1n—Ai42,..n) -

Example 5.14. 5(3737271) = 5{17273} X 5{4,5,6} X 5{7,8} X S{g} = Sg X 53 X SQ X Sl.

In general, S(y, . ) and Sy, X ... X Sy, are isomorphic as groups.

Definition 5.15. Suppose A = n. A Young tableau, t, of shape X is an array obtained by replacing
the dots of the Ferrers diagram of A\ with the numbers 1, 2, ..., n bijectively. There are n! many
Young tableaux for any shape A F n, one for each permutation in S,.
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Let t; ; stand for the entry of ¢ in position (¢, j). A Young tableau of shape A is also called a
\ — tableau, denoted by t*. Alternatively, one can write sh ¢t = X, or the shape of t is that of \.

Definition 5.16. Two A-tableaux t; and ty are row equivalent, t1 ~ to, if corresponding rows of
the two tableaux contain the same elements. A tabloid of shape X, or A-tabloid is then

[t] ={t1:t1 ~t}

where sh ¢t = A, If A = (Aq,...,\) F n, then the number of tableaux in any given equivalence class
is A1\l ! =: AlL Then the number of A-tabloids is n!/AlL

Example 5.17. The tableaux

1 2 N 2 1
3 3
are row-equivalent and their corresponding tabloid can be written
1 2
3

with horizontal lines indicating that it is a tabloid and thus that it is a representative of an
equivalence class where the other row-equivalent permutations of the representative tableau are in.

Tableau ¢ is acted upon by permutation = € S, by 7t = (7(¢(; ;). Note that we will use cycle

notation to describe permutations. For example
1 2 2 3

(123) 5 ° =]

Theorem 5.18. The action of S, on the tabloids by w[t] = [rt] is well-defined.

Proof. For this proof we must show that for all 7 € S, t ~ t' = 7t ~ wt’. We use induction on
the two-cycle decomposition of 7. First let ¢ € S, be a two-cycle, i.e. ¢ switches two elements
on the tableaux ¢ and . That is to say, o(t,p) = t(c,a)s T(tc,d) = Lap), and o(t ;) = t ;) for
all (i,7) # (a,b),(c,d). Similarly for o(t'). Now if t(qp) = t{, ) then 0(tap) = tca) =t gy =
O’(t/(a w))- O’(t/(a py) must be in the M row of t’ because it is in the ¢! row of ¢ and ¢ ~ t'. Therefore
for two-cycle o, t ~ t' = ot ~ ot'. Now Vr € S, m = II¥_,0; such that o; is a two-cycle. Let
the hypothesis be true for the product of k two-cycles. That is, t ~ ¢ = II¥_ o;t ~ I¥_ 0y, To

prove for k+ 1, we have Hfjllait = ak+1H§:10it and Hf::lait ~ Hleait’ therefore by the induction
hypothesis, 0k+1Hf:10it ~ 0’k+1Hf:102-t’ and therefore Vr € S, t ~ t/ = 7t ~ wt’. O

Definition 5.19. Let A - n. Define M* := C[[t1], ..., [tx]] where [t1], ..., [tx] is the complete list of
A-tabloids. M? is called the permutation module corresponding to A. It is a CS,-module.

Example 5.20. If A\ = (n), then M = C[12..n] is the trivial C-module.

Example 5.21. Let A = (1, 1, ..., 1) n times, or A = (1™). Then each equivalence class [t] consists
of a single tableau, identified with a permutation in S,. Then M1") 2 C[S,,].

Example 5.22. Let A = (n — 1,1). Each tabloid is uniquely determined by the single element in
the second row, which can be an integer from 1 to n. Therefore M ™~ = C[1,2,...,n]

Definition 5.23. Let ¢ be a tableau with rows labeled R, Ro, ..., R; and columns labeled C1, Co, ..., Cy.
Then
Rt = SR1 X SRQ X ... X SRZ
and
Ct = SCl X 302 X ... X Scl
are the row-stabilizer and column-stabilizer of t, respectively.
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Note that the tabloid equivalence classes can be expressed as [t] = Rit. Given a subset H C S,

we can form
Ht = E T
TeH

and

H™ = Z sgn(m)m

TeEH
in CS,,. We can then define

ki = Cp = Z sgn(m)m

weCy
Definition 5.24. If ¢t is a tableau, then the associated polytabloid is
€t = Kt [t]

and for any partition A - n, the Specht module, S*, is the submodule of M?* spanned by the
polytabloids e;.

Definition 5.25. A tableau t is standard if the rows and columns of ¢ are increasing sequences.
For example

1 2 3
t= 4 6
5
is standard, but
1 2 3
t= 5 4
6

is not.

The set {e; : t is a standard A-tableau} is a basis for S* (proof is long, see Sagan).
The goal is to connect Schur functors to multigraded Betti numbers and thereby use represen-
tation theory to contextualize our findings.

Definition 5.26. Let R be a commutative ring, £ and M R-modules and A - n. Let t be a Young
tableau of shape A. Index the n-fold direct product E x E X ... X E with the cells of t. A Schur
functor is a map ¢ : E*™ — M such that

(1) ¢ is multilinear
(2) ¢ is alternating in the entries indexed by the columns of ¢
(3) ¢ satisfies an exchange condition that if I C {1,2,...,n} are numbers of column i of ¢ then

o(z) = 3 6(a')

where 2/ is an n-tuple obtained from x by exchanging the elements indexed by I with any
| I | elements indexed by the numbers in column i — 1 in order.

The Schur functor is a functor from the category of modules over a commutative ring to itself and
is indexed by partitions.

Example 5.27. For an example of the exchange condition (3) let A = (2,2,1) and
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Let I = {4,5}, or the entries in the second column, then we get

d(z1, 2, T3, T4, T5) = P24, T5, T3, 1, T2) + P(X4, T2, 5, T1, T3) + H(T1, T4, T5, T2, X3)
and taking I = {5} gives

d(z1, 2, T3, T4, T5) = P(x5, T2, T3, Ta, T1) + P(X1, T5, T3, T4, T2) + H(T1, T2, T5, T4, X3)

Let I; be the i*" column of ¢, I;_; be the (i — 1)** and I C I;. Then in general this equivalence will
have (Iif 1) summands.

Definition 5.28. Let A - n have a Ferrers diagram L. For each cell (i, j) in L, the hook Hy(i,j)
of (i,7) is the set of cells (a,b) such that a =i and b > j or a > i and b = j. The hook-length
ha(i,7) is the number of cells in the hook H) (i, j)

The hook-length formula expresses the number of standard A-tableaux as dy as

!
n.
dy=

H h)\ (ia j)
where the product is over all the cells of L. Each partition A - n corresponds to an irreducible
representation of S, and the degree of each representation is the number of standard tableaux in
the shape of its corresponding partition. In other words, let Y be an irreducible representation of
S, and ) its corresponding partition. Then degY = d.

How does a partition A F n correspond to an irreducible representation of S,,? First, it may be
helpful to understand how partitions correspond with conjugacy classes of the symmetric group.
For any symmetric group, the cycle of a permutation determines that permutation’s conjugacy
class. In other words, two permutations are conjugates iff they have the same number of cycles of
each size.

Let A = (A1,...,\)) F n such that the first k; entries are equal, then the next ko are equal
and so on. Then A corresponds to the conjugacy class containing permutations composed of k;
disjoint Ai-cycles, ko disjoint Ag,yi-cycles, k3 disjoint Mg, 1k,+1-cycles, and so on, or k; disjoint
by tho+...+k;+1-Cycles.

Example 5.29. For n = 4, we have the following partitions A I 4 and their corresponding conjugacy
classes in Sy

Partition Conjugacy Class
(1,1,1,1) () identity
(2,1,1) (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)
(2,2) (1,2)(3,4), (1,3)(2,4), (1,4)(2,3)
(3,1) (1,2,3), (1,3,2), (1,2,4), (1,4,2), (1,3,4), (1,4,3), (2,3,4), (2,4,3)
(4) (1,2,3,4), (1,2,4,3), (1,3,2,4), (1,3,4,2), (1,4,2,3), (1,4,3,2)

This comprises all of the conjugacy classes of Sy.

Since each conjugacy class corresponds of S,, with an irreducible representation, so must each
partition A - n.

We want to use this information to generalize Theorem 3.3 of the Reiner and Roberts paper.
This theorem demonstrates the isomorphism between the direct sum of weight spaces €, VW)‘ and
@()\#)(V’\ ®@W*H)(,,s) and the reduced homologies Ho(A.; k) and Ho(A, 5; k) of the complete graph
matching complex A, and the chessboard complex A, 5, respectively. If these isomorphisms could
be generalized for arbitrarily many partitions, or at least for three, then it will become much easier
to understand the homologies given by the tripartite graphs. This requires a greater understanding
of weight spaces.
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Recall from the Reiner and Roberts paper that
Segre(m,n,r) = @ Sym®V ® Sym’W.
a,b>0,a=b+r

We would like to iterate on this equation to find some subalgebra X (m,n,s,r) of k[x,y,z| that
corresponds to a projective embedding similar to the Segre embedding

o ]P)m X Pn (_> P(m+1)(n+1)71
such that
o([Xo: X1t X, [Yo: Y1 1.1 Y,)) = [XoYo - XoY1 @ XpY5 00 X Vi)

Since the Segre subalgebra is used in the proof of Theorem 3.3 of the Reiner and Roberts paper,
iterating upon it to accommodate three symmetric algebras could be invaluable to our investigation
of tripartite graphs. Iterating on this yields an embedding

5P x P" x P < P(m-{—l)(n—i—l)(s—l—l)—l

which we may use to better understand the subalgebra of k[x,y,z] and to better understand the
homology given by tripartite graphs.

6. TAYLOR COMPLEX

The Taylor complex is a (in general non-minimal) resolution of a monomial ideal. The complex
is a natural generalization of the Koszul complex.

Definition 6.1. [8, Excercise 17.11] Let S = k[z1,...,x,] where k is any ring. Let mq,...,m,

be monomials in terms of the z;’s (that is m; = ' 28 ... 25" for some p1,...,p,). The Taylor
Complex, denoted T'(my, ..., m,), is the resolution

T(mi,...,my):0— F 2o 9 Ry
Where Fj is the free module on basis elements ey where I C {1,...,7}. Set my = lem{m, 1i € I}.

For each pair of subsets I, J where |I| = s and |J| = s — 1, let I = {i1,...,is} and suppose that
11 <19 < ...<1is. Now define:

Crj=

)

0 ifJgT
(—1)’“% if I = J U {ix} for some k

and
ds : FS — Fs—l by er — ZCL]@J
J

To compute our data we will use Macaulay 2 to compute specific Segre ideals. Since we are
studying Segre ideals, which are toric ideals, not monomial ideals, we will use the initial terms of
every term of a Grobner basis as generators for our monomial ideal.

Here we give the length of the Taylor Resolution for various Segre embeddings (with two parts, ny

and mngy not the sub-algebra discussed at the end of section 4). Since the process is very memory
intensive we are not able to calculate larger n values than those listed in the table.

Lm/ns | L | 2 | 3 | 4 |
1 1 3 6 10
2 : 9 5 5

Due to the memory requirements and the immediate extreme gap between the length of the
actual resolution compared to the taylor resolution we will not pursue this approach further.
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7. BOUNDED DEGREE GRAPH COMPLEXES AND HOMOLOGY FOR SPECIFIC CASES OF BOUNDED
DEGREE GRAPH COMPLEXES

We introduce a new complex and a new type of simplicial complex.

Definition 7.1. A Complete Graph with Loops on n wvertices is the graph constructed from the
complete graph on n vertices by adding a loop edge at each vertex.

Definition 7.2. Let G = (V, E) be a graph and n = |V/|. Furthermore label the vertices of V form
1 to nand let A = (A1, A\a,..., \p) with \; € N for all 0 < i < n. A bounded degree graph complex
of a graph G with a bound A is the simplicial complex whose faces are edge sets of subgraphs of G
whose vertex degree at vertex i is less then or equal to ;. We label these graphs BD(G, \)

In other words we have a list of bounds on the vertex that the subgraph must meet. This bound
requirement is closed under edge deletion so this is indeed a simplicial complex. The case of A\; = 1
for 0 < i < n is the matching complex since a subgraph is a matching if and only if each vertex
has degree at most 1. This is also a generalization of Definition 4.3 we can use a bipartite graph
for G with vertex partitions Vi and V5 and label the vertical edge of the chessboard with elements
of V} and the horizontal edge with elements of V5. This will give us the same complex.

The notation used in [I] and other sources for the bounded degree complex for complete graphs

and complete graphs with loops on n vertices are BD?; and BD)) respectively. We avoid this
since we will consider various other graphs. Furthermore we may choose to split A, i.e. given
A= (A1, ooy Ay Akt 1y ooy An)y BD(G,\) = BD(G, (M1, ey Ak)s (A1, ---An)). We will do this when it
is still clear what the vertex assignment of the bounds are.

We provide the proof of homologies or homotopy equivalences for specific cases of the various
bounded degree graphs in Sections [8] [9]

For bounded degree complete graphs because of the symmetry of the underlying complete graph,
we are able to replace any vertex in the underlying graph with another vertex. This means that we
given a degree bound, any permutation of the bounds will yield isomorphic spaces. This will allow
us to reduce the number of computations needed. In Sections [§ [} [I0] increasing sequences
were used to index different sets of bounds. We did this because there was more apparent pattern
in the bottom non-vanishing homology when we ordered them lexicographically in this indexing.
In this section we use weakly decreasing sequences or partitions because they are slightly easier to
work with.

The degree of a vertex of complete graphs on n vertices’s is n — 1, so the maximum values for
the bounds \; we need to consider is n — 1.

Theorem 7.3. For bounded degree complex of a complete graph on n vertices, BD(Ky,\), and
suppose X is of or is a permutation of partition (n—1,n—1, A3, ..., \p). Then BD(K,, \) is homotopy
equivalent to a point. Thus the homology is trivial everywhere and there is no torsion.

Proof. Consider BD(K,,(n — 1,n — 1, \s3,..., \,)), all other cases are isomorphic. The vertices 1
and 2 have the maximum bounds n — 1. So given a subgraph that meets the bound requirements it

either contain the edge 12 or can be extended to include 12. Thus the simplex is a cone described
in Definition and is homotopy equivalent to a point by [3.4] O

We can generalize this, the proof is similar to the one for Theorem [7.3]

Theorem 7.4. Given a graph G (possibly with loops) and a bound A = (A1, Az, ..., Ap) such that for
some vertex i and j (possibly non-distinct) connected by an edge, \; and \; are equal to the degree
of vertex i and j respectively, BD(G, \) is homotopy equivalent to a point.

8. DATA FOR BOUNDED DEGREE COMPLETE GRAPHS

Below is some data of the homology of several bounded degree graph complexes. The rational
homology for some of the bounded degree graph complexes are known as a result of Proposition
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We will be looking for any torsion present in those cases. The code we used is given in Section
13

The following is the data for the complete graph with bounded degree(multiplicity). These are
not the ones that correspond to Veronese Ideals, those are given later in the section(to be added).
The ones listed below are the non-vanishing ones, other bounds give us vanishing homology. For
complete graphs because of the symmetry we only need to consider weakly increasing sequences for
the bounds and the maximum bound we need to consider is the number of vertices—1. All other
bounds can be achieved by relabeling the vertices.

Complete Graph on 4 vertices, non-vanishing homology bounds

’ Partition/Homology H 0 ‘ 1 ‘ 2 ‘ 3 H Euler ‘
(1,1,1,1) 72 0 - - 3
(1,1,1,2) 0 Z - - 0
(1,1,2,2) 0 7? 0 - -1
(1,1,2,3) 0 Z 0 - 0
(2,2,2,2) 0 0 73 0 4
(2,2,2,3) 0 0 7Z 0 2

Complete Graph on 5 vertices, non-vanishing homology bounds
] Partition/ Homologﬁ\ 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 H Euler ‘
(1,1,1,1,1) 0 75 - - - - - - -5
(1,1,1,1,2) 0 YA - - - - - - -5
(1,1,1,1,3) 0 73 Z 0 - - - - -1
(1,1,1,1,4) 0 73 0 0 - - - - -2
(1,1,1,3,3) 0 0 7? 0 - - - - 3
(1,1,1,3,4) 0 0 7 0 - - - - 2
(1,1,2,2,2) 0 0 VA 0 - - - - 7
(1,1,2,2,3) 0 0 Z? 0 - - - - 3
(1,1,2,2,4) 0 0 7? 0 - - - - 3
(1,2,2,2,2) 0 0 73 0 - - - - 4
(1,2,2,2,3) 0 0 0 7> 0 - - - -1
(1,2,2,3,3) 0 0 0 VAR 0 - - - -1
(1,2,2,3,4) 0 0 0 7 0 - - - 0
(2,2,2,2,2) 0 0 0 VAL 0 - - - -8
(2,2,2,2,3) 0 0 0 VA 0 - - - -4
(2,2,2,2,4) 0 0 0 73 0 - - - -2
(2,2,3,3,3) 0 0 0 0 73 0 - - 4
(2,2,3,3,4) 0 0 0 0 73 0 - 4
(3,3,3,3,3) 0 0 0 0 0 72 0 - -5
(3,3,3,3,4) 0 0 0 0 0 Z 0 0 0
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More Euler Characteristic Data for various (1,...1) partition complete graphs
Complete graph vertices H Euler Characteristic

2 1

3 3

4 3

5 -5

6 -15

7 21

8 133

9 -27

10 -1215

11 -935

12 12441

9. DATA FOR BOUNDED DEGREE COMPLETE GRAPHS WITH LOOPS

These correspond to the Veronese Ideals from Proposition and the code adjusted for loops is
in Section We look back at the simplicial complex defined in Section [4 These bounded degree
subgraphs of complete graphs with loops corresponds to Veronese subalgebras. If the multidegree
has all ones entries then the bounded degree complexes for complete graphs and complete graphs
with loops are isomorphic since loops contribute two degrees to a vertex. The weight spaces of
Tor4n(Veronese(n,2,0), k) correspond to the bounded degree complexes of a complete graph with
loops and n vertices’s whose components of the multidegree sum up to an even number even.
Likewise the weight spaces of ToriA" (Veronese(n,2,1), k) correspond to the multidegrees with an
odd sum. For example the bounded degree complete graph with loops on 5 vertices with multidegree
(1,1,1,1,1) will correspond to a weight spaces of TOTZAn (Veronese(5,2,1), k).

Below is the data for bounded degree complexes of complete graphs on 3 and 4 vertices. We
furthermore have data for 5 vertices which is omitted because of the size. We use weakly increasing
sequences for the multidegrees. Any multidegree obtained from a permutation of the values in an
increasing sequences will yield an isomorphic complex. All complexes with trivial homology are
omitted. Below in the tables we see that for both n = 3 and n = 4, the homology groups of any
of the bounded degree complexes have torsion. This is also true for n=5, the homology groups
are all free. This tells us that Torf"(Veronese(n, 2,7),k) is not dependent on characteristic for
n < 6. We are still computing the case of n = 6, we have about 1/6 of all possible bounded degree
complexes for n = 6 computed and we have not found any torsion yet.

For the case of n = 7 we know that the matching complex of the complete graph on 7 vertices
is Z/3Z, so this tells us that the resolution for Veronese(7,2,1) is at least dependent on whether
we work in characteristic 3 or not. It is also mentioned by Reiner and Roberts [5] that it has
been proven by direct computation of homology of the bounded chessboard complex for n = 7
and multidegree (2,2,2,2,2,2,2) that Tor?7(Veronese(n,2,O), k) is dependent on if the field is
characteristic 5.
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Complete Graph with loops on 3 vertices, homology

Partition/Homology H 0 \ 1 \ 2 \ 3 ‘
(1,1, 1) 7? 0 - -
(1,1,2) 0 73 - -
1,1, 3) 0 VA 0 -
(1,2,2) 0 0 7 -
(1,2, 3) 0 VA 0 -
(2,2,2) 0 0 7 -
(2,3, 3) 0 0 Z 0
Complete Graph with loops on 4 vertices, homology
]Partition/Homologj\ 0 \ 1 \ 2 \ 3 \ 4 \ ) \ 6 \ 7 H Euler ‘
(1,1,1,1) 7?2 0 - - - - - - 3
(1,1, 1,2) 0 VA - - - - - - -2
(1,1, 1, 3) 0 7?2 0 - - - - - -1
(1,1, 1, 4) 0 0 7 - - - - - 2
(1,1, 2,2) 0 VA 0 - - - - - -3
(1,1, 2, 3) 0 0 7Z - - - - - 2
(1,1, 2, 4) 0 0 7 0 - - - - 2
(1,1, 3,3) 0 0 7?2 0 - - - - 3
(1,2, 2,2) 0 0 7Z - - - - - 2
(1,2, 2,3) 0 0 VA 0 - - - - 5
(1,2, 3,3) 0 0 Z 0 - - - - 0
(1,2, 3, 4) 0 0 0 Z 0 - - - 0
(1, 3,3, 3) 0 0 0 VA 0 - - - -1
(1, 3,3, 4) 0 0 0 Z 0 - - - 0
(2,2,2,2) 0 0 VA 0 - - - - 7
(2,2, 2,3) 0 0 7 0 - - - - 2
(2,2,2,4) 0 0 0 7? 0 - - - -1
(2,2, 3,3) 0 0 0 z* 0 - - - -3
(2,3,3,3) 0 0 0 73 0 - - - -2
(3,3, 3,3) 0 0 0 0 VA 0 - - 3
(3, 3, 3, 4) 0 0 0 0 VA 0 - - 3

The relationship between the growth of the homology and the partition may be correlated to the
increase of the number of tabloids for each partition. This number is given by the formula in 4.17.
As the number of possible tabloids for each partition increases, so too does the minimal homology
given by that partition. Therefore there may exist bounds indicating the minimal homology given
by a partition.

Another possibility we’ve considered was that the minimal homology of a partition was given by
the number of standard tableaux given by that partition’s shape. This is given by the hook-length
formula in 4.29. This however does not seem to be the case, because there are more standard
tableaux given by (1,1,1,1,4) than (1,1,2,2,2) but the latter has a greater minimal homology than
the former.

The correlation between the minimal nontrivial homology and the number of tabloids given by
the corresponding partitions seems to still hold under the pairs.
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For valuse of n > 6 we recall the following table for matching complexes form earlier,

n | H,, (M,)

7 7./3Z

] Z132

9 22 (Z/3L)®
10 7./37

11 Z1188 @(Z/3Z)45
12 (Z]37,)%°

13 7./3Z

Furthermore there is a theorem in Shareshian and Wachs [6]

Theorem 9.1. [6, Theorem 1.3] For n > 3, v, = || — 1 H,, (MK,) is finite iff n > 7 and
n ¢ {8,9,11}.

From the table we see that for n = 9,11 the bottom nonvanishing homologies contain a copy
of Z/37Z. This tells us for n > 9 and n even that qulql(Veronese(n, 2,0), k) is dependent on the
characteristic of k. Furthermore for n > 7 and n odd that T;i’ll(Veronese(n, 2,1), k) is dependent
on the characteristic of k.

We can run some calculation for higher n values given the multidegree contains small numbers.
The result(s) below are the homology results that are not free.

Select Homology for Bounded Degree Complete Graphs With Loops on 8 Vertices’s

’ multidegree/homology I 0 ‘ 1 | 5 | 3 |
] (2,1,1,1,1,1,1,1) | 0 | 0 (2% 6Z3L | & |

The above tells us that Tor?g(Veronese(S, 2,1),k) is dependent on the character of k. We have
not been able to find any characteristic dependence for T’ or? 8(Veronese(8,2,0),k).

10. DATA FOR CHESSBOARD COMPLEX

We have collected the data for various different sized Chessboard Complexes (i.e. the data corre-
sponding to a the complex created from a bipartite graph), the complete data for the (2,2), (2, 3), (3, 3)
and partial data for the (3,4) and (5,5) cases are included in this report but we have similar data
for (4,4) and (2,4). For each case we have also computed the associated betti numbers.

The bounded degree chessboard complexes correspond to Segre subalgebras. Again going back
to Section E[I, We look at the complex K, s) defined there. K, s will be non-empty when we
let the module M from Section {4 be Segre(n,m,r), where r = 37 u; — >77d;. In such case
K(,,5) will be isomorphic to the bounded degree chessboard complex with multiplicities x and 0.
Thus the bounded degree chessboard complexes on (n,m) vertices correspond to weight spaces of

TO’I“?m’n (Segre(n7 m, ’I“), k), where r = Zzn i — Z;n 5]-_

From the tables below and data we have omitted we show that TorlAm’"(Segre(n, m,r), k) is not
dependent on the characteristic of the field £ when n < 4 and m < 4.

Chessboard Complex with m = 2, n = 2 partition non-vanishing homology bounds

’ Partition/Homology I 0 ‘ 1 ‘ 2 I Euler ‘
(1a 1)7 (17 1) Z 0 - 2
1,1),(2,2) 0 Z 0 0

Chessboard Complex with m = 2,n = 3 partition non-vanishing homology bounds
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’ Partition/Homology H 0 ‘ 1 2 H Euler
(1,1),(1,1,1) 0 7Z - 0
(1,1),(1,1,2) 0 72 - -1
(1,1),(1,2,2) 0 73 - -2
(1,1),(2,2,2) 0 Z* - -3
(1,2),(1,1,1) 0 Z 0 0
(1,2),(1,2,2) 0 0 7 2
(1,2),(2,2,2) 0 0 7?2 3
(2,2),(1,1,1) 0 Z 0 0
(2,2),(2,2,2) 0 0 0 0
(3,3),(1,1,1) 0 0 Z 2

Chessboard Complex with m = 3,n = 3 partition non-vanishing homology bounds

’ Partition/Homology H 0 ‘ 1 ‘ 2 ‘ 3 ‘ 4 ‘ H Euler ‘
(1,1,1),(1,1,1) 0 VA 0 - - -3
(1,1,1),(1,1,2) 0 Z 0 - - 0
(1,1,1),(1,2,2) 0 0 7* - - 3
(1,1,1),(1,2,3) 0 0 VA - - 4
(1,1,1),(1,3,3) 0 0 VA - - 5
(1,1,1),(2,2,2) 0 0 A : - 6
(1,1,1),(2,2,3) 0 0 A - - 7
(1,1,1),(2,3,3) 0 0 Al - - 8
(1,1,1),(3,3,3) 0 0 VA - - 9
(1,1,2),(1,1,2) 0 0 Z 0 - 2
(1,1,2),(1,2,2) 0 0 Z 0 - 2
(1,1,2),(1,3,3) 0 0 0 Z - 0
(1,1,2),(2,2,2) 0 0 0 Z - 0
(1,1,2),(2,2,3) 0 0 0 VA - -1
(1,1,2),(2,3,3) 0 0 0 A - -2
(1,1,2),(3,3,3) 0 0 0 VA - -3
(1,2,2),(2,2,2) 0 0 0 Z 0 0
(1,2,2),(2,3,3) 0 0 0 0 Z 2
(1,2,2),(3,3,3) 0 0 0 0 7> 3
(2,2,2),(2,2,2) 0 0 0 Z 0 0
(2,2,2),(3,3,3) 0 0 0 0 0 0
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Chessboard Complex with m = 3,n = 4 partition non-vanishing homology bounds

’ Partition/Homologﬁ‘ 0 ‘ 1 ‘ 2 ‘ 3 ‘ 4 ‘ 5 ‘ 6 ‘ 7 ‘ 8 ‘ Euler ‘
(1,1,1),(1,1,1,1) 0 7?2 Z - - - - - - 0
(1,1,1),(1,1,1,2) 0 0 VA - - - - - _ 6
(1,1,1),(1,1,1,3) 0 0 75 - - - _ - - 7
(1,1,1),(1,1,2,2) 0 0 Z'" - - - - - - 12
(1,1,1),(1,1,2,3) 0 0 72 - - - - - - 13
(1,1,1),(1,1,3,3) 0 0 7B - - - - _ - 14
(1,1,1),(1,2,2,2) 0 0 A - - - _ - - 18
(1,1,1),(1,2,2,3) 0 0 73 - - - - - - 19
(1,1,1),(1,2,3,3) 0 0 AN - - - - - - 20
(1,1,1),(1,3,3,3) 0 0 A - - - - - _ 21
(1,1,1),(2,2,2,2) 0 0 723 - - - _ - - 24
(1,1,1),(2,2,2,3) 0 0 7" - - - - - - 25
(1,1,1),(2,2,3,3) 0 0 72 - - - _ _ - 26
(1,1,1),(2,3,3,3) 0 0 7.5 - - - _ - - 27
(1,1,1),(3,3,3,3) 0 0 VAl - - - - - - 28
(1,1,2),(1,1,1,1) 0 0 VA 0 - - - - _ 6
(1,1,2),(1,1,1,2) 0 0 7?2 0 - - _ - _ 3
(1,1,2),(1,1,2,2) 0 0 0 73 - - - - - -2
(1,1,2),(1,1,2,3) 0 0 0 7> - - _ - - —4
(1,1,2),(1,1,3,3) 0 0 0 A - - - - - —6
(1,1,2),(1,2,2,2) 0 0 0 7.0 - - - - _ -9
(1,1,2),(1,2,2,3) 0 0 0 72 - - - - - 11
(1,1,2),(1,2,3,3) 0 0 0 71 - - _ - - —13
(1,1,2),(1,3,3,3) 0 0 0 7' - - - - - —15
(1,1,2),(2,2,2,2) 0 0 0 7 - - - - _ —18
(1,1,2),(2,2,2,3) 0 0 0 7%t - - - - _ —20
(1,1,2),(2,2,3,3) 0 0 0 73 - - _ - - —22
(1,1,2),(2,3,3,3) 0 0 0 7% - - - - - —24
(1,1,2),(3,3,3,3) 0 0 0 /7 - - - - - —26
(1,1,3),(1,1,1,1) 0 0 Z 0 - - - - - 2
(1,1,3),(1,1,1,2) 0 0 0 7 0 - - - - 0
(1,1,3),(1,1,2,2) 0 0 0 7 0 - - - _ 0
(1,1,3),(1,1,3,3) 0 0 0 0 Z - - - - 2
(1,1,3),(1,2,2,2) 0 0 0 0 7 - - - - 2
(1,1,3),(1,2,2,3) 0 0 0 0 7?2 - - - _ 3
(1,1,3),(1,2,3,3) 0 0 0 0 73 - - - - 4
(1,1,3),(1,3,3,3) 0 0 0 0 Z* - - - - 5
(1,1,3),(2,2,2,2) 0 0 0 0 VAl - - _ - 6
(1,1,3),(2,2,2,3) 0 0 0 0 75 - - - - 7
(1,1,3),(2,2,3,3) 0 0 0 0 7" - - - - 8

The rest of the table is omitted as there is no torsion or other immediately noticeable interesting
patterns.
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Chessboard Complex

Euler Characteristic

M 5 3
M 4 1
M 5 5
M 6 6
M1 7 7
M 5 8
M2 2 2
M 0
M2 4 -4
Mo 5 10
Mg -18
Mo 28
Mo s ~40
Ms 5 -3
M;.y 0
M; 5 15
M g 48
Ms 105
M s 192
Mi.4 16
My s 20
Mg ~36
My 224
Mys ~640
Ms 5 55
Ms g 150
Ms~ 35
Ms 5 1160
M g 186
Mo~ 1092
M. 888
M; 203
Mg 7840
Ms s 26208

In general the formula for the Euler characteristic of a chessboard complex My, ,,, as given from
the characteristic polynomial[7, Theorem 4.20], is:

Where

XMy = {(

—1)mLE™ ifn>m
(=1)"L, ifn=m
=S

2n —m l
n—=~k Jk!
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The following data corresponds to the homology groups for the chessboard complex over the finite
field Z /37 (over any prime p this data is identical by replacing Z/3Z with Z/pZ). We compute
this data by applying the splitting property of the Universal coefficient theorem. We include the
data for the chessboard complex with m = 2,n = 2 and m = 2,n = 3 but we have also computed
the data for m =2,n=4and m =3,n =3 and m = 3,n = 4.

Chessboard Complex with m = 2, n = 2 partition non-vanishing reduced homology groups

] Partition/Homology I 0 1
(1,1),(1,1) 7.)37 0
1,1),2.2) 0 ZJ3Z

Chessboard Complex with m = 2,n = 3 partition non-vanishing homology groups

Partition/Homology H 0 1 2 3
(1,1),(1,1,1) 0 7./37 - -
(1,1),(1,1,2) 0 (Z./37)? - -
(1,1),(1,2,2) 0 (Z/37)3 - -
(1,1),(2,2,2) 0 (Z./37.)* - -
(1,2),(1,1,1) 0 7./3Z 0 -
(1,2),(1,2,2) 0 0 7./3Z -
(1,2),(2,2,2) 0 0 (7./37.)? -
(2,2),(1,1,1) 0 7./3Z 0 -
(2,2),(2,2,2) 0 0 0 7.]37
(3,3),(1,1,1) 0 0 7./37 -

11. DATA FOR COMPLEX ARISING FROM TRIPARTITE GRAPHS

We have collected the data for various different sized complexes which arise from tripartite
graphs , the complete data for the (2,2,2) case is included in this report. We also have data for
the (2,2,3), and (2,3, 3) cases as well as partial data for the (3,3,3) case as well. For each case we
have also computed the associated betti numbers.

Complex with parts 2, 2, 2 partition non-vanishing homology bounds
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For the (2,2,3) case (for which we have the complete data, although it is not included in this
report) we found torsion only in the 1st homology group for partition (1,1),(1,1),(1,1,1).
Specifically:

] Partition/Homology H 0 \ 1 \ 2 ‘
| (LD, 0 \ VAN YARY/ \ 73 \

Similarly for the (2,3, 3) case we include the partitions for which we computed torsion:

| Partition/Homology [[ 0 [ 1 [ 2 | 3 \ 4 \ 5 | 6 | 7]
(1,1),(1,1,2),(2,2,2) o [0 |0 |Z*Pz/3Z AL 0 - | -
(1,2),(1,1,1),(2,2,2) [[0] 0 |Z3| Z¥PZ/3Z A 0 - |-
(1,2),(1,1,3),(2,2,2) [[0] 0[O 0 7P 7/37 VA 0| -
(1,2),(1,2,2),(2,2,2) [[0] 0[O 0 725 (2/37)? A 0| -
(2,2),(1,1,2),(2,22) [[0] 0[O0 0 VAN YWARYAR VAl 0| -
(2,2),(1,2,2),(1,22) [[0] 0[O 0 7> @P(2/37)° 7% 0| -
(2,2),(1,2,3),(2,2,2) [[0] 0[O 0 0 Z3PZ/3Z |Z'] 0
(2,2),(2,2,2),(2,2,2) [[0]0 [0 0 0 2P (z/3z2)° |21 o

And for (2,3, 3) over Z/3Z we include the partitions for which we computed torsion over Z:

’ Partition/Homology H 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 ‘
(1,1),(1,1,2),(2,2,2) [[0]0 0 (z]37)® | (Z/3Z)® 0 : :
(1,2),(1,1,1),(2,2,2) [[0]0]| (/32 | (z/3z)® | (z/3Z)° 0 - -
(1,2),(1,1,3),(2,2,2) [[0]0 0 0 (Z/32)3 | (Z/37)7 0 -
(1,2),(1,2,2),(2,2,2) [[0]0 0 0 (Z/32)® | (z/37)" 0 -
(2,2),(1,1,2),(2,2,2) [[0]0 0 0 (Z/372)%® | (z/32)P 0 :
(2,2),(1,2,2),(1,2,2) [[0]0O 0 0 (Z/37)* | (z/32)** 0 -
(2,2),(1,2,3),(2,2,2) [[0]0 0 0 0 (Z/32)° | (Z/3Z)> |0
(2,2),(2,2,2),(2,2,2) [[0]0 0 0 0 (Z/32)'%% | (Z/3Z2)" |0

And for (2,3, 3) over Z/5Z we include the partitions for which we computed torsion over Z:

’ Partition/Homology H 0 ‘ 1 ‘ 2 ‘ 3 ‘ 4 ‘ 5 ‘ 6 ‘ 7 ‘
(1,1),(1,1,2),(2,2,2) [[0]O 0 (Z/5Z2)** | (Z/5Z) 0 - -
(1,2),(1,1,1),(2,2,2) [[0]0]| (/52 | (z/52)® | (Z/5Z)8 0 - -
(1,2),(1,1,3),(2,2,2) [[0]0 0 0 (Z/52)? | (Z/5Z)° 0 -
(1,2),(1,2,2),(2,2,2) [[0]0 0 0 (Z/572)%° | (z/57)" 0 -
(2,2),(1,1,2),(2,2,2) [[0]0 0 0 (Z/52)% | (Z/5Z2)7 0 -
(2,2),(1,2,2),(1,2,2) [[0]0 0 0 (Z/57)% | (z/52)® 0 -
(2,2),(1,2,3),(2,2,2) [[0]0 0 0 0 (Z/52)® | (Z/52)* |0
(2,2),(2,2,2),(2,2,2) [[0]0 0 0 0 (Z/52)° | (Z/5Z2)™ |0

Here we include an assortment of Betti numbers (over Z, though identical for all Z/pZ when
p # 3) for the (2,3,3) tripartite graph (The 1’s in the 0*" homology group are not reflected in the
homology table as the homology table’s are reduced homology):
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| Partition/Degree [ 0 [ 1T [ 2 [ 3 | 4 | 5 | 6 | 7 [ 8 ] 9 [ 10|
(1,1),(1,1,1),(1,1,1) 1 0 [ 50 [ 0 - - - - - - -
(171)7(17171)7(1a172) 1 0 23 1 - " " " " " -
(1,1),(1,1,1),(1,1,3) 1 0 [ 12 6 0 - - - - - -
(1,1),(1,1,1),(1,2,2) 1 0 [ 12 [ 18] 0 - - - - - -
(1,1),(1,1,1),(1,2,3) 1 0 [ 1224 ] 0 - - - - - -
(1,1),(1,1,1),(1,3,3) 1 0 [ 1230 | O - - - - - -
(1,1),(1,1,1),(2,2,2) 1 0 [ 12 46 | 0 - - - - - -
(1,1),(1,1,1),(2,2,3) 1 0 [ 12421 0 - - - - - -
(1,1),(1,1,1),(2,3,3) 1 0 [ 12 [ 43 ] 5 - - - - - -
(1,1),(1,1,1),(3,3,3) 1 0 [ 12 [ 48 | 14 | - - - - - -
(1,1),(1,1,2),(1,1,2) 1 0 0 [ 3 [ 0 - - - - -
(1,1),(1,1,3),(1,1,3) 1 0 0 0 2 0 - - - - -
(1,1),(1,2,2),(1,2,2) 1 0 0 0 [ 20] 0 - - - - -
(1,1),(2,2,2),(2,2,2) 1 0 0 0 0 [ 27 ] 5 0 - - -
(1,1),(2,3,3),(3,3,3) 1 0 0 0 0 0 0 2 0 - -
(1,1),(3,3,3),(3,3,3) 1 0 0 0 0 0 0 0 0 0 -
(1,2),(1,1,1),(1,1,1) 1 0 [24 ] 1 - - - - - - -
(1,2),(2,2,2),(2,2,2) 1 0 0 0 0 [121] 0 - - - -
(1,2),(3,3,3),(3,3,3) 1 0 0 0 0 0 0 0 6 0 -
(2,2),(1,1,1),(1,1,1) 1 0 6 [ 46 [ 0 - - - - - -
(2,2),(2,2,2),(2,2,2) 1 0 0 0 0 [101] 10 | O - - -
(2,2),(3,3,3),(3,3,3) 1 0 0 0 0 0 0 0 [ 3 [ 0 0

For the (3,3,3) case we include the partitions for which we computed torsion, since we only
computed partial data for this case, it is possible there is more tosion in other partitions. We leave
the completion of this calculation to future work:

| Partition/Homology [| 0 | 1 | 2 \ 3 | 4 |5]6][7]
(1,1,1),(1,1,1),(1,1,1) 00 [Z27Pz/37)? 73 _ N R
(1,1,1),(1,1,1),(2,2,2) [[ 0 | 0 A 8 PD(Z/32) * 2z | Z® |0 | - | -

To compare to the matching complex, here are some homologies for matching complexes of 3
partite graphs.

3-partite Matching Complex Homology
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Partition/Homology H 0 ‘ 1 ‘ 2 3 4
Ki11 Z? - - - -
Kiiz 72 0 - - -
Kii3 Z Z - - -
Ki14 Z A - - -
Kipg2 0 73 - n -
K23 0 VA 0 - -
K124 0 Z Z - -
Kiss 0 7./3Z 7> - -
Ki3a4 0 0 VA 0 -
K1 0 0 7% 77 -
K2 0 VAR 0 B N
Koo 0 72 © 7./37 73 - _
Ks24 0 7* z>® 0 -
Ko 33 0 0 750 0 N
Ka34 0 0 7% o 7/3L 7?2 -
Ko44 0 0 VARY/ 7 0
K373,3 0 0 VAl @2/322 VA -
K334 0 0 75 7/3Z 7752 0
K344 0 0 0 AR YAEY/ VA

12. TRIANGLE MATCHINGS OF TRIPARTITE GRAPHS

We define the following class of simplicial complexes and hope to relate them to modules through
the techniques described in section

Definition 12.1. Let G be a graph, a triangle is a set of vertices {x1, 2, z3} such that there is an
edge between any two of the vertices.

Definition 12.2. Let K be a set of triangles, we say the degree of vertex = in K is equal to the
number of triangles in K containing z. dg(z) ={T € K|z € T'}

For (1, p2, 13) where the length of 1,2, and ug are j, k, [ respectively, we consider the tripartite
graph whose components C, Co, C3 have j, k, and [ vertices’s respectively. Then for each component
we give the vertices in them some order. Then we can associate the j™ vertex of C; with the 5"
value of ;. We call this the bound of vertez x and will denote it as bd(,, ., u,)(7). Furthermore we
will call (p1, p2, u3) the multidegree or bounded degree.

Definition 12.3. Let T(
d(x) < bd(ul,uz,u:a)(x)'

We are bounding the number of times we allow a vertex to appear in a set of triangles, which
is closed under removal of triangles from K, so the simplicial complex is well defined. When the
multidegree (1, p2, 13) has values all 1, then we use the notation 7). s; where r,s,t are the length
of 1, o, 13 respectively.

Below is the data for when puq,u2, and us have entries that are all 1. The calculations are done
in Sage by creating a graph whose vertices are indexed by triangles of the tripartite graph. There
is an edge between two verteces if the triangles do not share a vertex. Then the desired complex is
the clique complex of this graph.

1 pa.uz) the complex whose elements K are sets of triangles such that
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3-partite Triangle Matching Complex Homology

Partition/Homology H 0 ‘ 1 ‘ 2 3
Tr22 73 0 - -
1322 7 7* - -
1332 0 75 - -
Ts33 0 7% 0 -
T2 Z 7,10 - -
T432 0 VA - -
Tyss3 0 A VA -
Tya2 0 7113 _ -
T474,3 0 Z4 2195 _
Thia 0 0 77T 0
T522 Z 7% - -
15,32 0 ZT _ _
T573’3 0 Z4O Z84 _
1542 0 71 - -
T57473 0 Z2 Z?Bl _
T5.4, 0 0 71513 77
T55,2 0 z>! - -

We also have code and data for other values of the multidegree 1,12, and us are greater then 1
but we will omit it because of the amount.

Theorem 12.4. Given complex T| where p; = n;, all maximal simplices will have dimension

min{ny,no,nz} — 1

1, 42,43)

Proof. Given a element L of the T{,, ., .;) with less then min{ni,na,n3} triangles, there will exist
a vertex x1, xa, x3 in C1, Cy, C3 respectively such that dp (z;) < b (11 us i) (x;) because of our choice
of bound. Then L U {1, 2,23} is also in the complex. If a set of triangles has order grater then
min{ni,ng,n3} then dr,(z;) > bd(,, 1, s)(7i) for some z; by the pigeonhole principal and so is not
in the complex. O

Theorem 12.5. Let multidegree w1, pa, pi3 of length ny,no,ng have entries all 1. Then T|

has (7;;) : (n;ZE!k)! (n3 k i faces of dimension k — 1 for 0 < k < min{ny,na,n3} — 1.

H1,42,/43)

Proof. We can make a set of k triangles on the complete tripartite graph K, 5, n, that do not over-
lap uniquely by the following method. Pick k vertices from each of the components 1, zs, ..., x} €
Ci, y1,92, -,y € Co, and z1, 29, ...,2; € C3. We can make a unique set of k triangles by the
following. Fix an arbitrary order for the vertices from C7. Without loss of generality lets order
them as w1, ..., x;. Then for each ordering of vertices y1,¥2, ..., yr and 21, 22, ..., 21 as Y, ..., i, and
Zj s -, 2, take the set of triangles {{x1, vi,, 2j, }, {22, Yiss Zjs }+ -, {@k, Yiy» 25, } - This will uniquely
define a k-1 dimensional simplex since we fixed the order of vertices from C;. Now we can count
the number of orderings, there are (721) (7;2) (7}:) initial choices and once we fix an ordering on
C; the there are k! choices of ordering for wyi,¥o,...,yx and 21, 29, ..., 2z each. So then we have

(R CR) - Bk = (7)) 2 oy -

We now look at some results in the table above. We conjecture from the results that for the case
of 1, o, ns all of length n have entries all 1, and that the reduced homology is trivial everywhere
except at degree n — 2. Then from the following formula over a field

Y (=DFdim(C) = Y (~1)* dim(H(X))
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where C; is the i*" dimension of the simplicial complex and along with the conjecture that the
homology will be torsion free we get the following;:

Conjecture 12.6. Let multidegree ji1, pi2, u3 all be of length n have entries all 1, then T, ., 4, has

the homology as follows
0 i#En—2
Hi(Tm,uz,us) = {

7o j=p —2
where a(n) = (—1)"2 Zzzo(—l)k(@((nﬁi!k)!)?

Now we look at the case when pz = (1,1) and let the pj, p2 be length ny > 2 and ng > 2 and
have all one entries. Then the maximal dimension of the simplicial complex is 1. Construct the
graph whose vertex set is the triangles of K, »,2 and an edge between triangles if they do not
share a vertex. Then the simplicial complex of this graph is T},, ,, ;- Then we the following are
known about the complex.

Theorem 12.7. Let us = (1,1), p1, p2 be length ny > no > 3 and have all 1 entries. Then (reduced
homology) Ho(Ty, yspus) = 0. If n1 > 3 and ng = 2 then we have that Ho(Ty, u, us) = Z. Lastly if
ni =ng =2 the HO(TH17M2,H3) =73

Proof. We will prove the number of connected components the graph has, which will give us the
homology Hy. When n; > ng > 3 let the vertices of the tripartite graph be z1,...,2,, € Ci,
Y1, - Yny € Co and 21, 22 € C3. We will prove all vertices are connected to the vertex indexed by
the triangle {z1,y1,21}. Given a {z;,y;, 2} if 4,5,k # 1 then there will be an edge between the
vertex it indexes and the vertex indexed by {x1,41,21}. If k = 1 then there exists a i’ # i # 1
and j' # j # 1 so then {x;,y;, 21} has an edge to {x;/,y;/, 22} which we have already said has an
edge to {x1,y1, 21}. Then for triangles of form {x;,y;, 22} where i or j is 1, then it is connected to
some {xy,y;/, 21} which is connected to {x1,y1,21}. There is only one connected component of the
graph so the reduced homology is 0.

Then when us = (1,1) we have that x1,...,z,, € C1, y1,y2 € C2 and 21, 29 € C3. Then it can be
seen that there is no sequence of edges connecting {z1,y1,21} and {z1,y1, 22} since any triangle
indexing a vertex connected by an edge will simultaneously switch the vertices’s of Cy and Cjs.
Then it can be seen by similar argument to ny > 3 case that every vertex will be connected to
one of {x1,y1,21} or {x1,y1,22}. There are two connected components of the graph so the reduced
homology is Z.

For n; = ny = 2 one can draw the easily graph and see that there are 8 vertices’s and 4 disjoint
components giving us the desired homology result. O

Theorem 12.8. Let pug = (1,1), p1, po be length ny > 3 and ny > 3 and have all 1 entries. Then
Hi(Ty o ps) = Zb(mn2) phere b(ni,m2) =1—2n1ng+ni(n1 —1)ne(ne—1). If ng >3 and ng = 2
then Hy(Tyy pypus) = ZPT0"2)FL When ny = ng = 2 then Hy(Tyy p ) 08 trivial.

Proof. Since we are just looking at the complex of a graph it suffices to not find cycles to show if
the homology is trivial. For the ny = ng = 2 case draw the graph as in the proof of theorem [12.7]
The graph will have no loops so the kernel of the boundary map will be 0.

Then recall for complexes of graphs for each connected component the the 1st homology will
be a free module rank |E| — |V| + 1. Furthermore we can take direct sums in the case of disjoint
components. The using Theorem[12.5|and plugging in ng = 2 we get 1 —2n1ng+n1(n1—1)ng(ng—1)
if we have one component. We will not have one component in the case of ny > 3 and no = 2 as
explained in the proof of theorem In this case we have two components with |E| — |[V| + 1
values 1 — ning + %nl(nl — 1)ng(ng — 1) in both since the two components will be identical. Then
adding the two will give us b(ny,ng) + 1. O
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To relate this back to Section [4] we consider the subalgebra of k[z1,..., 2,1, ..., Yj, 21, .., 2]
generated by monomials of form z,ysz; where 1 < r < ¢, 1 < s < j, 1 <t < k. Lets call
this subalgebra Triple(i, j, k) for now. Using the notation from Section {4} we let the module be
Triple(i, j, k) and we consider the special case when i = j = k. Then the module defined in Section
K, jio,u5 is non-empty when p1, 2, u3 have entries all one, so they corresponds to a weight space
of Torf(Triple(n,n,n), k) for A = k[x1,...;Tn, Y15 Yns 215 oo Zn) Ky po,us Will be isomorphic to
T}, jio,u3 in this case. We are looking into cases when ¢, j, k are not the same value and the the case
when the multidegrees in T}, ,, ,; contain values greater than 1.

13. CODE AND DOCUMENTATION

lessthanvector(u,v)
e u,v - vectors inputs to be compared. They should be the same length, code will still work
if u has more components then v.
Compares two vectors, returns True if the ith component of u is less then of equal to the ith com-
ponent of v for all components in u.

allonevector(i)
e i - positive integer

Returns a vector length i with all entry as 1.

Boundedgraphelement(Vector,Graph)

e Vector-vector, input should be the bounded degree of each vertex of Graph in the order
they are given in Graph.

e Graph - Any non-empty simple graph without a loop, vertex ordering should correspond to
bound given in vector.

Returns True if the Graph inputed meets the vertex bound given by vector. Returns False otherwise.

Boundedgraphelement(Vector,Graph)

e Vector-vector, input should be the bounded degree of each vertex of Graph in the order
they are given in Graph.
e Graph - Any non-empty simple graph with a loop, vertex ordering should correspond to
bound given in vector.
Returns True if the Graph inputed meets the vertex bound given by vector. Returns False oth-
erwise. This is the code with adjustments to account for the 2 degrees a loop adds to the degree
of a vertex. We replace Boundedgraphelement(Vector,Graph) with this function in AddGraph-
WithEdgeToList(List,edge,boundvector) to adjust the other code to loops.

AddGraphWithEdgeToList(List,edge,boundvector)
e List - Initial list of simple graphs without loops
e edge - edge to be added and checked if resulting graph meets bound requirements. The
edge must be have endpoints in verteces already present in graphs in List.
e boundvector - vector, maximum vertex degree condition to check.
Returns a list of graphs which includes thee original List and any graph in List with edge added
that still meet the bounded degree condition.

GenerateAllBoundedDegreeGraphs(OriginalGraph,boundeddegree)

e OriginalGraph - Simple Graph(without loops) that we wish to find all embeddable sub-
graphs which meet a maximum vertex degree condition
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e boundeddegree - vector input indexed by verteces of Original Graph indicating the maximum
degree we allow subgraphs of OriginalGraph to have.
Returns a list of subgraphs of OriginalGraph that meet the maximum degree bound given by
boundeddegree.

#Checks number of components in u<v, then check if that number is equal to the length of
u.
def lessthanvector(u,v):
i = len(u)
counter=0
k=0
while k<i:
if ulk] < v[k]+1:
counter = counter+l
k=k+1
return counter==i

#make all 1 vector length i
def allonevector(i):
return matrix(QQ, 1, i, lambda x, y: 1).row(0)

#Then we construct a function to check if a graph is bounded as such we construct one
for the adjacency matrix A for a graph G by degree v(a partition)
def Boundedgraphelement (vector,Graph):
if len(vector) == len(Graph):
A = Graph.adjacency_matrix()
u = Axallonevector(len(vector))
return lessthanvector(u,vector)
else:
return False

def Boundedgraphelementwithloop(vector,Graph) :
if len(vector) == len(Graph):
g = copy(Graph)
A = g.adjacency_matrix()
g.remove_loops ()

if g.remove_loops == None:
u = 2*A
else:
B = A-g.adjacency_matrix()

u = (A+B)*allonevector(len(vector))
return lessthanvector (u,vector)
else:
return False

def AddGraphsWithEdgeToList(List,edge,boundvector):
DummyList = []
for Graph in List:
AddEdgeGraph = copy(Graph)
AddEdgeGraph.add_edge (edge)
if Boundedgraphelement (boundvector,AddEdgeGraph) :
DummyList.append (AddEdgeGraph)
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List.extend (DummyList)

def GenerateAllBoundedDegreeGraphs(OriginalGraph,boundeddegree) :
InitialGraph = Graph(OriginalGraph.order())
List = [InitialGraph]
for edge in OriginalGraph.edges(Q):
AddGraphsWithEdgeToList (List,edge,boundeddegree)
return List

checkifsimplex(Y)
e Y - the object to be tested, preferably a set or simplicial complex.

Returns True if input is a simplicial complex and is a simplex at least on O-dimensional element or
empty. Returns False otherwise, most importantly in the case when the simplicial complex is not a
simplex, when it is the simplicial complex containing only the empty set and when the input is a set.

IsnonEvasive(Set,Order,Complex)

e Set - The simplex expressed as a set of O-simplices, to be assessed as evasive or non-evasive.

e Order - A some permutation of the 0-simpilices that will determine a order of decomposition
for the element decision tree.

e Complex - Simplicial Complex we are making a decision tree for.

Returns True if the Set if Set is non-evasive in the decision tree of Complex determined by Order.
The order gives the order of decomposition into link and deletion of the complex.

numberofEvasive(Order,Complex)

e Order - Some permutation of the 0-simplices which determine the order of decompostionfor
a decision tree for Complex
e Complex - Complex to be assessed

Returns the number of evasive sets in Complex given the decision tree for Complex determined by
Order.

numberofEvasivewithdim(Order,Complex,dim)

e Order - Some permutation of the 0-simplices which determine the order of decompostionfor
a decision tree for Complex

e Complex - Complex to be assessed

e dim - dimension of Complex to find number of evasive sets in

Returns the number of evasive sets in dimension dim of Complex given the decision tree for Com-
plex determined by Order.

MinimalEvasiveOverRandomPermutation(Complex)
e Complex - A finite simplicial complex

Returns the minimal number of evasive sets in Complex given the decision tree for Complex de-
termined by Order, where we run through all permutations for Order. This does not give us the
true minimum over all decision trees but will give us a bound on the minimal number of evasive sets.

MinimalEvasiveOverRandomPermutationwithdim(Complex,dim)

e Complex - A finite simplicial complex
e dim - integer indicating a dimension of Complex.
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Returns the minimal number of evasive sets in dimension dim of Complex given the decision tree
for Complex determined by Order, where we run through all permutations for Order. This does not
give us the true minimum over all decision trees but will give us a bound on the minimal number
of evasive sets of dimension dim.

NumEvasiveOverRandomPermutation(Complex)
e Complex - Complex to be assessed

Returns the number of evasive sets in Complex given the decision tree for Complex determined by
Order, which is a random permutation of the 0-simplices.
NumkEvasiveOverRandomPermutationwithdim(Complex,dim)

e Complex - Complex to be assessed
e dim - integer indicating dimension of elements of Complex

Returns the number of evasive sets in Complex of dimension dim given the decision tree for Complex
determined by Order, which is a random permutation of the O-simplices.

def checkifsimplex(Y):
if isinstance(Y,SimplicialComplex):
if Y == SimplicialComplex():
return False
elif len(Y.maximal_faces())==1:
return True
else: return False
elif Y.is_empty():
return True
else:
return False

#determine if a set is nonevasive input
def IsnonEvasive(Set,Order,Complex):
#print (Complex.faces())
NewComplex = copy(Complex)
NewOrder = copy(Order)
NewSet = copy(Set)
if len(NewOrder) ==
#print ("A")
return False
elif NewOrder[0] in Set:
#NewComplex = Complex
NewComplex = NewComplex.link([NewOrder[0]])
if checkifsimplex(NewComplex) == True:
#print ("B")
return True
else:
#print ("C")
NewSet .remove (NewOrder [0])
NewOrder.remove (NewOrder [0])
return IsnonEvasive(NewSet,NewOrder,NewComplex)
else:
NewComplex.remove_face([NewOrder[0]])
if checkifsimplex(NewComplex) == True:



#print ("E")
return True
else:
#print ("F")
NewOrder.remove (NewOrder [0])
return IsnonEvasive(NewSet,NewOrder,NewComplex)

def numberofevasive(Order,Complex) :
count = 0
i = len(Complex.faces())-1
for j in range(i):
#print Complex.faces() [j]
for Set in Complex.faces() [j]:
#print (Order)
#print (IsnonEvasive(list(Set),0rder,Complex))
if IsnonEvasive(list(Set),Order,Complex) == False:
count = count+1
#print ("A")
#print (Set)
#print (count)
return count

def numberofevasivewithdim(Order,Complex,Dimension):
count = 0
for Set in Complex.faces() [Dimension]:
#print ("B")
if IsnonEvasive(list(Set),Order,Complex) == False:
count = count+l
#print ("A")
#print (count)
return count

def MinimalEvasiveOverPermutations(Complex):
k=-1
for Order in Permutations(len(Complex.faces() [0])):
Order = list(Order)
1 = numberofevasive(Order,Complex)
if k == -1:
k=1
elif k>1:
k=1
return k

def MinimalEvasiveOverPermutationswithdim(Complex,Dimension):
k=-1
for Order in Permutations(len(Complex.faces() [0])):
Order = list(Order)
1 = numberofevasivewithdim(Order,Complex,Dimension)
if k == -1:
k=1
elif k>1:
k=1
return k

33
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def NumEvasiveOverRandomPermutation(Complex) :
Order = Permutations(len(Complex.faces()[0])).random_element ()
print (Order)
Order = list(Order)
return numberofevasive(Order,Complex)

def NumEvasiveOverRandomPermutationwithdim(Complex,Dimension):
Order = Permutations(len(Complex.faces()[0])).random_element ()
print (Order)
Order = list(Order)
return numberofevasivewithdim(Order,Complex,Dimension)

matchinghom(g)

e g - Graph
Returns the homology of the simplicial complex whose elements are partial matchings of the graph
g.

def matchinghom(g):

h = g.line_graph()
G = h.complement ()
X = G.clique_complex()

return X.homology()

generatealltriangles(r,s,t)
e st - integer entries counting the number of vertex in the tripartite graph

Returns the number of triangles in a tripartite graph with r,s,t vertices’s in its components. Tri-
angles are triples such that any two elements of the triple are connected by an edge to each other.

sharevertex(list1,list2)

e listl, list2 - list of integers
Returns True if the i® components of list1 is the same as the i*" component of list2 for all index
of list1.

maketrianglerelationgraph(List)
e List - List of lists of integers, ideally this is a list of triangles(as a list of vertices’s)

Returns a graph whose vertex are indexed by the items of List. There is an edge between two ver-
tices’s if they share a common element in the i*® component. In terms of triangles on a tripartite
graph, the vertices’s of triangles and there is an edge if they share a vertex.

maketrianglematchingcomplex(r,s,t)

e 1.5t - positive integers
Returns the simplicial complex whose elements are sets of triangles of a who do not share any
vertices’s.

checkboundcondition(matchingboundl,matchingbound2,matchingbound3,bound1,bound2,bound3,t

e boundl, bound2, bound3 - list of positive integers, indicates the vertex bounds of each
vertex in the respective component



35

e matchingboundl, matchingbound2, mathchingbound3 - list of list of bounds
e triangle - list of 3 positive integers indexing the triangle form the complete tripartite graph

Returns True if the given triangle meets the bound requirements when added to the bounds for

another list of triangles.
addmatchingtolists(ListOfBoundedMatchings,ListofBounds1,ListofBounds2,ListofBounds3,index,tr

e ListOfBoundedMatchings - List of sets of triangles of a tripartite graph

e ListofBoundsl,ListofBounds2,ListofBounds3 - corresponding degrees for the sets of triangle
in ListOfBoundedMatchings

e triangle - triangle to be added

e index - index of list of triangles to have a triangle added to

e triangle - list of 3 tuple that make a triangle to be added

Adds new set of triangle to ListOfBoundedMatchings and updates List OfBounds with the corre-
sponding degrees for the components.

generateboundeddegreetriangle(bound1,bound2,bound3)

e boundl,bound2,bound3 - list of integers giving bounds of each vertex in the triparite graph
by component

Returns a list of sets of triangles where each vertex occurs at most by the bound given.

import itertools

def generatealltriangles(r,s,t):
K =[]
for i in range(r):
for j in range(s):
for k in range(t):
K.append([i,j,k])
return K

def sharevertex(listl,list?2):
for i in range(len(listl)):
if list1[i] ==1ist2[i]:
return True
return False

def maketrianglerelationgraph(List):
K= T[]
size = len(List)
everypair = list(itertools.combinations(range(size), 2))
for pair in everypair:
if sharevertex(List[pair[0]],List[pair[1]])==False:
K.append(pair)
RelationGraph = Graph(K)
return RelationGraph

def maketrianglematchingcomplex(r,s,t):
Triangles = generatealltriangles(r,s,t)
RelationGraph = maketrianglerelationgraph(Triangles)
TriangleMatchingComplex = RelationGraph.clique_complex()
return TriangleMatchingComplex
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def

checkboundcondition(matchingboundl,matchingbound2,matchingbound3,boundl,bound2,bound3,triangle) :
if matchingboundl[triangle[0]]<boundl[triangle[0]]:

if matchingbound2[triangle[1]]<bound2[triangle[1]]:

if matchingbound3[triangle[2]]<bound3[triangle[2]]:
return True

else:

return False

def

addmatchingtolists(ListOfBoundedMatchings,ListofBoundsl,ListofBounds2,ListofBounds3,index,triangle,"

boundl = ListofBoundsi[index]+vector(ZZ,
{len(ListofBoundsl[index])-1:0,triangle[0]:1})

ListofBounds1.append(boundl)

bound2 = ListofBounds2[index]+vector(ZZ,
{len(ListofBounds2[index])-1:0,triangle[1]:1})

ListofBounds2.append (bound2)

bound3 = ListofBounds3[index]+vector(ZZ,
{len(ListofBounds3[index])-1:0,triangle[2]:1})

ListofBounds3.append (bound3)

dummymatching = copy(ListOfBoundedMatchings[index])

dummymatching.append(triangleindex)

ListOfBoundedMatchings.append (dummymatching)

#make a function to check vertex bound conditions
def generateboundeddegreetriangles(boundl,bound2,bound3):
r = len(boundl)
s = len(bound2)
t = len(bound3)
Al1Triangles = generatealltriangles(r,s,t)
ListOfBoundedMatchings = [[]]
ListofBoundsl = [vector(ZZ, {r-1:0})]
ListofBounds?2 [vector(ZZ, {s-1:0})1]
ListofBounds3 = [vector(ZZ, {t-1:0})]
for j in range(len(AllTriangles)):
for i in range(len(ListOfBoundedMatchings)):
if

checkboundcondition(ListofBounds1[i] ,ListofBounds2([i],ListofBounds3[i],boundl,bound2,bour
addmatchingtolists(ListOfBoundedMatchings,ListofBoundsl,ListofBounds2,ListofBounds3,1i,All
return ListOfBoundedMatchings
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