

New Perspectives on Geproci-ness

> Jake Kettinger

New Perspectives on Geproci-ness

Jake Kettinger

26 October 2022

Understanding Complete Intersections

New Perspectives on Geproci-ness

> Jake Kettinger

Definition

An algebraic set is a **complete intersection** if it equal to the intersection of algebraic sets.

For this talk, we will be interested in complete intersections that are sets of **points**.

Like this.

What is Geproci?

New Perspectives on Geproci-ness

> Jake Kettinger

Definition

An algebraic set Z in \mathbb{P}^n_k is **geproci** if the projection of Z from a general point P onto a hyperplane is a complete intersection in \mathbb{P}^{n-1}_k .

Geproci stands for **ge**neral **pro**jection is a **c**omplete **i**ntersection.

What We Know: Coplanar Points

New Perspectives on Geproci-ness

> Jake Kettinger

> > A set of coplanar points can only be geproci if they are already a complete intersection on the plane they're on.

What We Know: Grids

New Perspectives on Geproci-ness

> Jake Kettinger

Definition

A **grid** in \mathbb{P}^3 is a set of points that form the intersection of two families of mutually-skew lines.

Every grid is geproci, and the projection of the points of a grid is a complete intersection of two unions of lines.

Grids and coplanar points are the trivial cases of geproci-ness.

An (a,b)-grid with $3 \le a \le b$ is a set of points on a smooth quadric.

What We Know: D_4

New Perspectives on Geproci-ness

> Jake Kettinger

> > D_4 is a set of 12 points and 16 3-rich lines. It is (3,4)-geproci and the smallest non-trivial geproci set in characteristic 0.

 D_4 is a half-grid. It is also the only non-trivial (3,b)-geproci set where $b \geq 3$.

Unexpected Cones

New Perspectives on Geproci-ness

> Jake Kettinger

All known examples of geproci sets are from unexpected cones.

Definition

A set of points $Z\subseteq \mathbb{P}^3$ admits an **unexpected cone** of degree d if

$$\dim\left([I(Z)]_d\cap[I(P)^d]_d\right)>\max\left(0,[I(Z)]_d-\binom{d+2}{3}\right)$$

for a general $P \in \mathbb{P}^3$.

This is "unexpected" because one would expect by a dimension count that being singular at P to impose $\binom{d+n-1}{n}$ conditions.

Cones and Geproci

New Perspectives on Geproci-ness

Jake Kettinger Unexpected cones allow us to project from the general vertex onto a plane:

Geometry in Positive Characteristic

New Perspectives on Geproci-ness

Jake Kettinger Geometry gets weird in positive characteristic! You may already be familiar with $\mathbb{P}^2_{\mathbb{Z}/2\mathbb{Z}}$, aka the **Fano Plane**.

New Perspectives on Geproci-ness

> Jake Kettinger

 $\#\mathbb{P}^3_{\mathbb{F}_q}=\frac{q^4-1}{q-1}=q^3+q^2+q+1=(q+1)(q^2+1). \text{ There is a degree-}q+1 \text{ cone containing }\mathbb{P}^3_{\mathbb{F}_q} \text{ and has a vertex at a general point }P=(a,b,c,d). \text{ This cone is given by}$

$$\begin{split} &(c^qd-cd^q)(x^qy-xy^q)-(b^qd-bd^q)(x^qz-xz^q)\\ &+(b^qc-bc^q)(x^qw-xw^q)+(a^qd-ad^q)(y^qz-yz^q)\\ &-(a^qc-ac^q)(y^qw-yw^q)+(a^qb-ab^q)(z^qw-zw^q) \end{split}$$

So dim
$$([I(Z)]_{q+1} \cap [I(P)^{q+1}]_{q+1}) = 1 > 6 - \binom{q+3}{3}$$
.

Spreads in $\mathbb{P}^3_{\mathbb{F}_q}$

New
Perspectives
on
Geproci-ness

Jake Kettinger Each line contains q+1 points. Can $\mathbb{P}^3_{\mathbb{F}_q}$ be partitioned by q^2+1 mutually-skew lines? Yes! Such a partition is called a **spread**.

Theorem (Bruck and Bose '63)

Let $\mathbb{P}^{2t-1}_{\mathbb{F}_q}$ be an odd-dimensional projective space over a field \mathbb{F}_q of size q, where q is a power of a prime. Then there exists a spread in $\mathbb{P}^{2t-1}_{\mathbb{F}_q}$.

New Perspectives on Geproci-ness

> Jake Kettinger

Theorem

The set of points $\mathbb{P}^3_{\mathbb{F}_q}$ is $(q+1,q^2+1)$ -geproci in \mathbb{P}^3_k , where k is an algebraically closed field containing \mathbb{F}_q .

This set is a half-grid. Note when q=2, we get a non-trivial (3,5)-geproci set!

Partial Spreads

New Perspectives on Geproci-ness

Jake Kettinger

Definition

A partial spread of $\mathbb{P}^3_{\mathbb{F}_q}$ with deficiency d is a set of q^2+1-d mutually-skew lines. A **maximal partial spread** is a partial spread of positive deficiency that is not contained in a spread.

In $\mathbb{P}^3_{\mathbb{Z}/3\mathbb{Z}}$, the only maximal partial spread has seven lines (d=3). The complement of this maximal partial spread is a set of 12 points that form a D_4 ! Recall that this configuration exists in characteristic 0.

Look

New Perspectives on Geproci-ness

> Jake Kettinger

Blow-Ups of Spaces

New Perspectives on Geproci-ness

> Jake Kettinger

$$\mathsf{BL}_B(\mathbb{P}^n) = \{(P, L) \in \mathbb{P}^n \times \mathsf{Gr}(2, n+1) : B \in L, P \in L\}.$$

 $\mathsf{BL}_B(\mathbb{P}^n)$ projects onto \mathbb{P}^n via $\pi_B(P,L)=P.$

Definition

The preimage $\pi_B^{-1}(B)$ is the **exceptional locus** of B.

For a general variety
$$X \hookrightarrow \mathbb{P}^n$$
, $\mathsf{BL}_B(X) = \overline{\pi_B^{-1}(X \setminus \{B\})}$.

Infinitely-Near Points

New Perspectives on Geproci-ness

Jake Kettinger

Definition

Let X be an algebraic variety and let $P \in X$. The point Q is **infinitely-near** P if Q is on the exceptional locus of the blowup of X at P.

Abuse of notation: Technically, $Q \in \mathsf{BL}_P(X)$, but we will be speaking of infinitely-near points as if they were points of X itself.

Geproci With Infinitely-Near Points

New Perspectives on Geproci-ness

> Jake Kettinger

The char k=2. Let $Z=\{(1,0,0,0)\times 2, (0,1,0,0)\times 2, (0,0,1,0)\times 2\}$, with the infinitely-near point at each ordinary point corresponding to the line containing (0,0,0,1).

Then Z is a (2,3)-geproci half-grid.

Another Example

New Perspectives on Geproci-ness

> Jake Kettinger

Let $Z=\{(1,0,0,0)\times 2, (0,1,0,0)\times 2, (0,0,1,0)\times 2, (0,0,0,1)\times 2, (1,1,1,1)\}$, which each infinitely-near point corresponding to the line containing (1,1,1,1). Then Z is a (3,3)-geproci. It is not a half-grid.

Future Problems

New Perspectives on Geproci-ness

> Jake Kettinger

- 1. Do infinitely-near points provide new examples of geproci sets in characteristic 0?
- 2. Does taking higher-order infinitely-near points provide new examples of geproci sets?
- 3. Do **maximal partial spreads** provide new examples of geproci sets that work in characteristic 0?