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Understanding Complete Intersections

Definition

An algebraic set is a complete intersection if it equal to the
intersection of algebraic sets.

For this talk, we will be interested in complete intersections
that are sets of points.

Like this.
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What is Geproci?

Definition

An algebraic set Z in Pn
k is geproci if the projection of Z from

a general point P onto a hyperplane is a complete intersection
in Pn−1

k .

Geproci stands for general projection is a complete
intersection.
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What We Know: Coplanar Points

A set of coplanar points can only be geproci if they are already
a complete intersection on the plane they’re on.
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What We Know: Grids

Definition

A grid in P3 is a set of points that form the intersection of two
families of mutually-skew lines.

Every grid is geproci, and the projection of the points of a grid
is a complete intersection of two unions of lines.

Grids and coplanar points are the trivial cases of geproci-ness.

An (a, b)-grid with 3 ≤ a ≤ b is a set of points on a smooth
quadric.
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What We Know: D4

D4 is a set of 12 points and 16 3-rich lines. It is (3, 4)-geproci
and the smallest non-trivial geproci set in characteristic 0.

D4 is a half-grid. It is also the only non-trivial (3, b)-geproci set
where b ≥ 3.
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Unexpected Cones

All known examples of geproci sets are from unexpected cones.

Definition

A set of points Z ⊆ P3 admits an unexpected cone of degree
d if

dim
(
[I(Z)]d ∩ [I(P )d]d

)
> max

(
0, [I(Z)]d −

(
d+ 2

3

))
for a general P ∈ P3.

This is “unexpected” because one would expect by a dimension
count that being singular at P to impose

(
d+n−1

n

)
conditions.
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Cones and Geproci

Unexpected cones allow us to project from the general vertex
onto a plane:
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Geometry in Positive Characteristic

Geometry gets weird in positive characteristic! You may already
be familiar with P2

Z/2Z, aka the Fano Plane.
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Unexpected Cones in P3
Fq

#P3
Fq

=
q4 − 1

q − 1
= q3 + q2 + q+1 = (q+1)(q2 +1). There is a

degree-q + 1 cone containing P3
Fq

and has a vertex at a general

point P = (a, b, c, d). This cone is given by

(cqd− cdq)(xqy − xyq)− (bqd− bdq)(xqz − xzq)

+(bqc− bcq)(xqw − xwq) + (aqd− adq)(yqz − yzq)

−(aqc− acq)(yqw − ywq) + (aqb− abq)(zqw − zwq)

So dim
(
[I(Z)]q+1 ∩ [I(P )q+1]q+1

)
= 1 > 6−

(
q + 3

3

)
.
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Spreads in P3
Fq

Each line contains q + 1 points. Can P3
Fq

be partitioned by

q2 + 1 mutually-skew lines? Yes! Such a partition is called a
spread.

Theorem (Bruck and Bose ‘63)

Let P2t−1
Fq

be an odd-dimensional projective space over a field
Fq of size q, where q is a power of a prime. Then there exists a
spread in P2t−1

Fq
.
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A Theorem

Theorem

The set of points P3
Fq

is (q + 1, q2 + 1)-geproci in P3
k, where k

is an algebraically closed field containing Fq.

This set is a half-grid. Note when q = 2, we get a non-trivial
(3, 5)-geproci set!
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Partial Spreads

Definition

A partial spread of P3
Fq

with deficiency d is a set of q2 + 1− d
mutually-skew lines. A maximal partial spread is a partial
spread of positive deficiency that is not contained in a spread.

In P3
Z/3Z, the only maximal partial spread has seven lines

(d = 3). The complement of this maximal partial spread is a
set of 12 points that form a D4! Recall that this configuration
exists in characteristic 0.
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Look
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Blow-Ups of Spaces

BLB(Pn) = {(P,L) ∈ Pn × Gr(2, n+ 1) : B ∈ L,P ∈ L}.

BLB(Pn) projects onto Pn via πB(P,L) = P.

Definition

The preimage π−1
B (B) is the exceptional locus of B.

For a general variety X ↪→ Pn, BLB(X) = π−1
B (X \ {B}).
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Infinitely-Near Points

Definition

Let X be an algebraic variety and let P ∈ X. The point Q is
infinitely-near P if Q is on the exceptional locus of the
blowup of X at P .

Abuse of notation: Technically, Q ∈ BLP (X), but we will be
speaking of infinitely-near points as if they were points of X
itself.
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Geproci With Infinitely-Near Points

The char k = 2. Let
Z = {(1, 0, 0, 0)× 2, (0, 1, 0, 0)× 2, (0, 0, 1, 0)× 2}, with the
infinitely-near point at each ordinary point corresponding to the
line containing (0, 0, 0, 1).

Then Z is a (2, 3)-geproci half-grid.
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Another Example

Let Z = {(1, 0, 0, 0)× 2, (0, 1, 0, 0)× 2, (0, 0, 1, 0)×
2, (0, 0, 0, 1)× 2, (1, 1, 1, 1)}, which each infinitely-near point
corresponding to the line containing (1, 1, 1, 1). Then Z is a
(3, 3)-geproci. It is not a half-grid.
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Future Problems

1. Do infinitely-near points provide new examples of geproci
sets in characteristic 0?

2. Does taking higher-order infinitely-near points provide new
examples of geproci sets?

3. Do maximal partial spreads provide new examples of
geproci sets that work in characteristic 0?
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