A Model for COVID-19 with Limited Vaccination

Glenn Ledder

Department of Mathematics University of Nebraska-Lincoln gledder@unl.edu

June 14, 2021

Aim of the Research

- ► Study the impact of key interacting factors:
 - o social distancing and mask use
 - testing [included, but not studied in this talk]
 - o vaccination distribution rate
 - vaccination efficacy
 - vaccination acceptance

Key Requirements Beyond SEIR

- Multiple Infectious Classes:
 - Symptomatic
 - Asymptomatic
 - shorter duration, lower infectivity, no testing
 - Hospitalized
 - possible mortality, no infectivity
- Multiple Interventions
 - Masks and Physical Distancing
 - reduced infectivity for unconfirmed cases
 - Testing and Isolation
 - reduced infectivity for confirmed cases
 - Vaccination (infection-blocking and/or disease-blocking)
 - not everyone accepts, not always effective
 - limited supply

The PSEAIHRD Model (expanded SEIR)

- Susceptible Classes
 - Pre-vaccinated
 - Susceptible
- Exposed (latent) Classes
 - Exposed
- Infectious Classes
 - Asymptomatic
 - Infectious (symptomatic)
 - Hospitalized
- Removed Classes
 - Recovered (or vaccinated)
 - Deceased

The PSEAIHRD Model

transitions, transmissions, vaccination, divergent paths

The PSEAIHRD Model – Transitions

The PSEAIHRD Model – Transmissions

$$\lambda = \beta X, \quad X = f_c(p_c I + p_{ca} A) + \delta[(1 - p_c)I + f_a(1 - p_{ca})A].$$

- p_c and p_{ca} are the fractions of confirmed cases for symptomatic and asymptomatic infectives.
- f_c, f_a are the infectivities of confirmed cases, and asymptomatic cases, relative to an unconfirmed symptomatic infective.
- $ightharpoonup \delta$ is a 'contact factor' that incorporates physical distancing and mask use for unconfirmed cases.

The PSEAIHRD Model – Vaccination

- $ightharpoonup r_i$ are the probabilities of vaccine failure.
- **s** is the probability that the vaccine fails to stop infection.
- v_i are rate 'constants' that depend on the status of the vaccination program.

Base Vaccination Model

$$W' = -\frac{VW}{K+W}, \qquad W(0) = W_0 = 1 - d.$$

- W is the fraction of people who want vaccination.
 - d is the population fraction of vaccine dissenters.
- Finding recipients for a vaccinator is like finding substrate for a biochemical enzyme.
 - V is the supply-limited maximum vaccination rate (population fraction per day).
 - K is the semi-saturation level.

Two-Class Vaccination Model

▶ Suppose a fraction τ of W is high-risk.

$$W_2(0) = \tau W_0, \quad W_1(0) = (1-\tau)W_0.$$

► Assume the same model for high-risk as for the whole group.

$$W_2' = -\frac{V}{K + W_2} W_2 \equiv -v(W_2)W_2, \quad v(W_2) = \frac{V}{K + W_2}.$$

Then

$$W'_1 = W' - W'_2 = \cdots = -u(W)v(W_2)W_1, \quad u(W) = \frac{K}{K + W}.$$

PSEAIHRD Vaccination Details

▶ We need *v_i* for

$$P_i' = -v_i P_i - \lambda P_i.$$

▶ We have

$$W_1' = -u(W)v(W_2)W_1, \quad W_2' = -v(W_2)W_2,$$
 $v(W_2) = \frac{V}{K + W_2}, \quad u(W) = \frac{K}{K + W}.$

Therefore

$$v_2 = v(W_2), \quad v_1 = u(W)v(W_2).$$

▶ We need only couple the W and W_2 equations to the PSEAIHRD system.

Key Fixed Parameter Values

- Types of Cases (pre-vaccination):
 - 60% of cases symptomatic
 - 20% of cases confirmed
 - 8% of confirmed cases require hospitalization (1.6% of total)
 - 25% mortality for hospitalized patients (0.4% of total)

Initial State

- 20% of the population is at high risk.
- 60% of people initially susceptible (S and P)
- Infectious classes calculated from assumption of 4000 US deaths per day.
- Vaccination Parameters
 - maximum rate V = 0.005

Base Scenario: $\delta = 1$, V = 0, $\mathcal{R}_0 = 6$

Vaccination Scenario: $\delta = 1$, V = 0.005, $\mathcal{R}_0 = 6$

V = 0.005; $\delta = 1, 0.8, 0.6, 0.4, 0.2$ (bl.–gr., gold default)

$$D_{\infty}$$
 vs V ; $\delta=1,0.8,0.6,0.4,0.2$ (bl-gr)

$$D_{\infty} \text{ vs } V$$
; $R_0 = 6,7,8,9 \text{ (bl-vi)}$

Parameters That Matter Less

- ► The vaccine failure fraction *r* only matters if it is more than 30%.
- The partial failure fraction s does not matter.
- ▶ The dissension fraction d only matters if it is more than 50%.
 - Our scenarios assume 40% are already immune.

Resources

- See https://www.math.unl.edu/SIR-modeling for
 - Details on a classroom activity, including directions for an online implementation;
 - SIR and SEIR teaching modules using Excel and Matlab;
 - Links to some useful resources.
- See https://www.math.unl.edu/covid-module for COVID-19 teaching modules.
- Ledder and Homp, Using a COVID-19 model in various classroom settings to assess effects of interventions, PRIMUS 2021
 - https://www.tandfonline.com/doi/full/10.1080/10511970.2020.1861143
- Shoot me an email to receive updates or offer feedback! gledder@unl.edu