Teaching Mathematical Epidemiology at a Variety of Levels Using Multiple Representation Theory

Glenn Ledder

Department of Mathematics University of Nebraska-Lincoln gledder@unl.edu

August 19, 2020

Part 1: Theory

- 1. Multiple representation theory
- 2. Some modeling activities
- 3. Narrow and broad views

Multiple representation theory

Multiple representation theory was introduced by Diaz-Eaton et al (PRIMUS, 2019). It is a variant of the "Rule of Four."

- Models have multiple representations:
 - Verbal
 - Visual
 - Symbolic
 - Numerical
 - Experiential

Multiple representation theory

Multiple representation theory was introduced by Diaz-Eaton et al (PRIMUS, 2019). It is a variant of the "Rule of Four."

- Models have multiple representations:
 - Verbal
 - Visual
 - Symbolic
 - Numerical
 - Experiential
- ► Modeling: making connections between representations.

Some modeling activities

- Choosing questions
- Choosing outcomes to report
- Choosing assumptions
- Translating assumptions to mathematics
- ► Determining parameter values
- Doing graphical analysis
- ► Doing symbolic analysis
- Running simulations
- Presenting results
- ► Communicating results

Narrow and broad views

Narrow view: The actual mathematics problem; for example, a dynamical system with variables S(t), I(t), and R(t), along with parameters that have fixed (possibly unspecified) values.

Narrow and broad views

- Narrow view: The actual mathematics problem; for example, a dynamical system with variables S(t), I(t), and R(t), along with parameters that have fixed (possibly unspecified) values.
- ▶ **Broad view**: A map from the space of parameters to the space of outcomes.

Narrow and broad views

- Narrow view: The actual mathematics problem; for example, a dynamical system with variables S(t), I(t), and R(t), along with parameters that have fixed (possibly unspecified) values.
- ▶ Broad view: A map from the space of parameters to the space of outcomes.
- ► The technical work is in the narrow view, but most of the modeling is in the broad view.
 - Example: Plot a graph of the final susceptible population as a function of the basic reproductive number.

Part 2: Practice

- 1. A classroom activity
- 2. Questions
- 3. Model development
- 4. Simulation
- 5. Parameterization
- 6. Comparisons
- 7. Parameter studies
- 8. Reporting results

A classroom activity

- Students have status cards: green for susceptible, yellow for asymptomatic infectious, red for symptomatic infectious, blue for recovered.
- ► Students are paired randomly in each time step. If green meets yellow or red, transmission occurs with probability 5/6.
- Transitions from yellow to red and red to blue take exactly one day.
- ► Students record, graph, and discuss results.
- Variants can include isolation of symptomatics and vaccination.

Questions

- ▶ What features do we want to vary among scenarios?
 - Infectivity
 - Mask usage
 - Initial immunity percentage

Questions

- ▶ What features do we want to vary among scenarios?
 - Infectivity
 - Mask usage
 - Initial immunity percentage
- ► What outputs do we want to measure?
 - Graphs of class populations
 - Maximum size of class I
 - Time for peak of infections
 - Final percentage susceptible
 - Hospitalizations
 - Deaths

Model development - assumptions

We focus on the SEIR epidemic model as an example.

- ► Four classes:
 - S: Susceptible (can be infected)
 - E: Exposed/Latent (infected, but cannot transmit)
 - I: Infectious (can transmit)
 - R: Removed (recovered or deceased)

Model development - assumptions

We focus on the SEIR epidemic model as an example.

- ► Four classes:
 - S: Susceptible (can be infected)
 - E: Exposed/Latent (infected, but cannot transmit)
 - I: Infectious (can transmit)
 - R: Removed (recovered or deceased)
- ► Three processes:
 - Susceptible (S) to latent (E) by transmission at rate βSI .
 - Latent (E) to infectious (I) by incubation at rate ηE .
 - Infectious (I) to removed (R) by recovery/death at rate γI .

Model development - assumptions

We focus on the SEIR epidemic model as an example.

- Four classes:
 - S: Susceptible (can be infected)
 - E: Exposed/Latent (infected, but cannot transmit)
 - I: Infectious (can transmit)
 - R: Removed (recovered or deceased)
- Three processes:
 - Susceptible (S) to latent (E) by transmission at rate βSI .
 - Latent (E) to infectious (I) by incubation at rate ηE .
 - Infectious (I) to removed (R) by recovery/death at rate γI .
- ► Two scenario parameters:
 - Add a contact factor δ that accounts for masks.
 - \circ Add an initial immunity fraction V for follow-up scenarios.

Model development - equations

- Susceptible (S) to latent (E) by transmission at rate $\delta\beta SI$, where δ is a "contact factor" that represents policy and behavior.
- Latent (E) to infectious (I) by incubation at rate ηE .
- Infectious (I) to removed (R) by recovery/death at rate γI .

$$S' = \delta \beta SI,$$
 $S(0) = 1 - E_0 - I_0 - V;$ $E' = \delta \beta SI - \eta E,$ $E(0) = E_0$; $I' = \eta E - \gamma I,$ $I(0) = I_0$; $R' = \gamma I,$ $R(0) = V$.

Simulation

- ► I have simulation programs in Matlab, R, and Excel for SIR, SEIR, and SEAIHRD (Covid-19).
- Students enter scenario data and get a graph.

- Best estimates of incubation period and infectious period are $t_e = 5$ and $t_i = 10$, or $\eta = 0.2$ and $\gamma = 0.1$.
- ▶ For β , assume we know the early phase doubling time t_d .
 - Assume $E' = \lambda E$, $I' = \lambda I$, where $\lambda = \ln 2/t_d$

- ▶ Best estimates of incubation period and infectious period are $t_e = 5$ and $t_i = 10$, or $\eta = 0.2$ and $\gamma = 0.1$.
- ▶ For β , assume we know the early phase doubling time t_d .
 - Assume $E' = \lambda E$, $I' = \lambda I$, where $\lambda = \ln 2/t_d$
 - Substitute $E = \rho I$, $I' = \lambda I$, S = 1, $\delta = 1$ into E and I equations (note $\langle \rho, 1 \rangle^T$ is an eigenvector):

$$\rho\lambda = \beta - \rho\eta, \qquad \lambda = \rho\eta - \gamma.$$

- ▶ Best estimates of incubation period and infectious period are $t_e = 5$ and $t_i = 10$, or $\eta = 0.2$ and $\gamma = 0.1$.
- ▶ For β , assume we know the early phase doubling time t_d .
 - Assume $E' = \lambda E$, $I' = \lambda I$, where $\lambda = \ln 2/t_d$
 - Substitute $E = \rho I$, $I' = \lambda I$, S = 1, $\delta = 1$ into E and I equations (note $\langle \rho, 1 \rangle^T$ is an eigenvector):

$$\rho\lambda = \beta - \rho\eta, \qquad \lambda = \rho\eta - \gamma.$$

• Eliminate ρ to get

$$\beta = \frac{(\lambda + \eta)(\lambda + \gamma)}{\eta},\tag{1}$$

- ▶ Best estimates of incubation period and infectious period are $t_e = 5$ and $t_i = 10$, or $\eta = 0.2$ and $\gamma = 0.1$.
- ▶ For β , assume we know the early phase doubling time t_d .
 - Assume $E' = \lambda E$, $I' = \lambda I$, where $\lambda = \ln 2/t_d$
 - Substitute $E = \rho I$, $I' = \lambda I$, S = 1, $\delta = 1$ into E and I equations (note $\langle \rho, 1 \rangle^T$ is an eigenvector):

$$\rho\lambda = \beta - \rho\eta, \qquad \lambda = \rho\eta - \gamma.$$

 \circ Eliminate ho to get

$$\beta = \frac{(\lambda + \eta)(\lambda + \gamma)}{\eta},\tag{1}$$

• With $t_d \in [3.5, 4.0]$, we get

$$\mathcal{R}_0 = \beta t_i = \frac{(\lambda + \eta)(\lambda + \gamma)}{\eta \gamma} \in [5.1, 5.9].^* \tag{2}$$

Comparisons

- Vary infectivity β with no interventions or immunity. Examine time series for S and I. (top)
- ▶ Vary contact factor (with R0 = 5.9 for Covid-19). (bottom)

► But my students don't know computer programming.

- ► But my students don't know computer programming.
- Possible solutions:
 - Teach programming.
 - Takes too much time, and some students struggle.

- ► But my students don't know computer programming.
- Possible solutions:
 - Teach programming.
 - Takes too much time, and some students struggle.
 - Use Excel with a template.
 - Students bring some prior experience.
 - Limited programming capacity.

- But my students don't know computer programming.
- Possible solutions:
 - Teach programming.
 - Takes too much time, and some students struggle.
 - Use Excel with a template.
 - Students bring some prior experience.
 - Limited programming capacity.
 - o Provide Matlab programs (usable with Octave).
 - Some modifications needed.
 - o If properly designed, the modifications are minimal!

Making programming easy – SEIR_simplot.m

```
%% DEFAULT SCENARIO DATA
beta = 0.5;
etc
V = 0:
%% INDEPENDENT VARIABLE DATA
xvals = [0.5, 0.4, 0.3, 0.2];
%% COMPUTATION
for n=1:N
   beta = xvals(n);
   [S,E,I,R] = seir_sim(beta,eta,gamma,E0,I0,V)
   etc
end
```

Parameter studies

- ► How does the extent of mask use affect key outcomes: maximum *I*, final *S*, times for these events?
 - Use SEIR_paramstudy.m.

- Numbers and formulas are of no intrinsic value as results.
 - Results should be reported visually and verbally.

- Numbers and formulas are of no intrinsic value as results.
 - Results should be reported visually and verbally.
- Insist that graphs adequately display results.
 - Good choices for axis limits.
 - Descriptive captions.

- Numbers and formulas are of no intrinsic value as results.
 - Results should be reported visually and verbally.
- Insist that graphs adequately display results.
 - Good choices for axis limits.
 - Descriptive captions.
- Insist on meaningful communication of results.
 - Verbal descriptions, like "The function increases to a maximum and then decreases to 0", are not enough.

- Numbers and formulas are of no intrinsic value as results.
 - Results should be reported visually and verbally.
- Insist that graphs adequately display results.
 - Good choices for axis limits.
 - Descriptive captions.
- ▶ Insist on meaningful communication of results.
 - Verbal descriptions, like "The function increases to a maximum and then decreases to 0", are not enough.
 - Insist on explanations and/or interpretations, like "The infectious population reaches a maximum because transmission slows down as the number of susceptibles decreases."

Resources

- Thanks for "coming"!
- See https://www.math.unl.edu/SIR-modeling for
 - Details on the classroom activity, including directions for an online implementation;
 - Materials for using spreadsheets to teach epidemic modeling;
 - Links to some useful resources.
- See https://www.math.unl.edu/covid-module for similar spreadsheet materials.
- ► These pages will be updated soon to include Matlab materials, SEIR versions, and notes and videos from my epidemiology class just finished.
- ▶ Shoot me an email to receive updates on my materials.