
Teaching Mathematical Epidemiology at a Variety
of Levels Using Multiple Representation Theory

Glenn Ledder

Department of Mathematics
University of Nebraska-Lincoln

gledder@unl.edu

August 19, 2020



Teaching Mathematical Epidemiology

1 Theory

Part 1: Theory
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Multiple representation theory

Multiple representation theory was introduced by Diaz-Eaton et al
(PRIMUS, 2019). It is a variant of the “Rule of Four.”

I Models have multiple representations:

◦ Verbal
◦ Visual
◦ Symbolic
◦ Numerical
◦ Experiential

I Modeling: making connections between representations.
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Some modeling activities

I Choosing questions

I Choosing outcomes to report

I Choosing assumptions

I Translating assumptions to mathematics

I Determining parameter values

I Doing graphical analysis

I Doing symbolic analysis

I Running simulations

I Presenting results

I Communicating results
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Narrow and broad views

I Narrow view: The actual mathematics problem; for example,
a dynamical system with variables S(t), I (t), and R(t), along
with parameters that have fixed (possibly unspecified) values.

I Broad view: A map from the space of parameters to the
space of outcomes.

I The technical work is in the narrow view, but most of
the modeling is in the broad view.

◦ Example: Plot a graph of the final susceptible population as a
function of the basic reproductive number.
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Part 2: Practice

1. A classroom activity

2. Questions

3. Model development

4. Simulation

5. Parameterization

6. Comparisons

7. Parameter studies

8. Reporting results
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A classroom activity

I Students have status cards: green for susceptible, yellow for
asymptomatic infectious, red for symptomatic infectious, blue
for recovered.

I Students are paired randomly in each time step. If green
meets yellow or red, transmission occurs with probability 5/6.

I Transitions from yellow to red and red to blue take exactly
one day.

I Students record, graph, and discuss results.

I Variants can include isolation of symptomatics and
vaccination.
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Questions

I What features do we want to vary among scenarios?

◦ Infectivity
◦ Mask usage
◦ Initial immunity percentage

I What outputs do we want to measure?

◦ Graphs of class populations
◦ Maximum size of class I
◦ Time for peak of infections
◦ Final percentage susceptible
◦ Hospitalizations
◦ Deaths
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Model development - assumptions

We focus on the SEIR epidemic model as an example.

I Four classes:

◦ S: Susceptible (can be infected)
◦ E: Exposed/Latent (infected, but cannot transmit)
◦ I: Infectious (can transmit)
◦ R: Removed (recovered or deceased)

I Three processes:

◦ Susceptible (S) to latent (E) by transmission at rate βSI .
◦ Latent (E) to infectious (I) by incubation at rate ηE .
◦ Infectious (I) to removed (R) by recovery/death at rate γI .

I Two scenario parameters:

◦ Add a contact factor δ that accounts for masks.
◦ Add an initial immunity fraction V for follow-up scenarios.
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Model development - equations

◦ Susceptible (S) to latent (E) by transmission at rate δβSI ,
where δ is a “contact factor” that represents policy and
behavior.

◦ Latent (E) to infectious (I) by incubation at rate ηE .

◦ Infectious (I) to removed (R) by recovery/death at rate γI .

S ′ = δβSI , S(0) = 1−E0−I0−V ;

E ′ = δβSI − ηE , E (0) = E0 ;

I ′ = ηE − γI , I (0) = I0 ;

R ′ = γI , R(0) = V .
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Simulation

I I have simulation programs in Matlab, R, and Excel for SIR,
SEIR, and SEAIHRD (Covid-19).

I Students enter scenario data and get a graph.
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Parameterization (for Covid-19)
I Best estimates of incubation period and infectious period are

te = 5 and ti = 10, or η = 0.2 and γ = 0.1.
I For β, assume we know the early phase doubling time td .

◦ Assume E ′ = λE , I ′ = λI , where λ = ln 2/td

◦ Substitute E = ρI , I ′ = λI , S = 1, δ = 1 into E and I
equations (note 〈ρ, 1〉T is an eigenvector):

ρλ = β − ρη, λ = ρη − γ.

◦ Eliminate ρ to get

β =
(λ+ η)(λ+ γ)

η
, (1)

◦ With td ∈ [3.5, 4.0], we get

R0 = βti =
(λ+ η)(λ+ γ)

ηγ
∈ [5.1, 5.9].∗ (2)



Teaching Mathematical Epidemiology

2 Practice

Parameterization

Parameterization (for Covid-19)
I Best estimates of incubation period and infectious period are

te = 5 and ti = 10, or η = 0.2 and γ = 0.1.
I For β, assume we know the early phase doubling time td .

◦ Assume E ′ = λE , I ′ = λI , where λ = ln 2/td
◦ Substitute E = ρI , I ′ = λI , S = 1, δ = 1 into E and I

equations (note 〈ρ, 1〉T is an eigenvector):

ρλ = β − ρη, λ = ρη − γ.

◦ Eliminate ρ to get

β =
(λ+ η)(λ+ γ)

η
, (1)

◦ With td ∈ [3.5, 4.0], we get

R0 = βti =
(λ+ η)(λ+ γ)

ηγ
∈ [5.1, 5.9].∗ (2)



Teaching Mathematical Epidemiology

2 Practice

Parameterization

Parameterization (for Covid-19)
I Best estimates of incubation period and infectious period are

te = 5 and ti = 10, or η = 0.2 and γ = 0.1.
I For β, assume we know the early phase doubling time td .

◦ Assume E ′ = λE , I ′ = λI , where λ = ln 2/td
◦ Substitute E = ρI , I ′ = λI , S = 1, δ = 1 into E and I

equations (note 〈ρ, 1〉T is an eigenvector):

ρλ = β − ρη, λ = ρη − γ.

◦ Eliminate ρ to get

β =
(λ+ η)(λ+ γ)

η
, (1)

◦ With td ∈ [3.5, 4.0], we get

R0 = βti =
(λ+ η)(λ+ γ)

ηγ
∈ [5.1, 5.9].∗ (2)



Teaching Mathematical Epidemiology

2 Practice

Parameterization

Parameterization (for Covid-19)
I Best estimates of incubation period and infectious period are

te = 5 and ti = 10, or η = 0.2 and γ = 0.1.
I For β, assume we know the early phase doubling time td .

◦ Assume E ′ = λE , I ′ = λI , where λ = ln 2/td
◦ Substitute E = ρI , I ′ = λI , S = 1, δ = 1 into E and I

equations (note 〈ρ, 1〉T is an eigenvector):

ρλ = β − ρη, λ = ρη − γ.

◦ Eliminate ρ to get

β =
(λ+ η)(λ+ γ)

η
, (1)

◦ With td ∈ [3.5, 4.0], we get

R0 = βti =
(λ+ η)(λ+ γ)

ηγ
∈ [5.1, 5.9].∗ (2)



Teaching Mathematical Epidemiology

2 Practice

Comparisons

Comparisons
I Vary infectivity β with no interventions or immunity. Examine

time series for S and I. (top)
I Vary contact factor (with R0 = 5.9 for Covid-19). (bottom)
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Modeling teacher’s dilemma

I But my students don’t know computer programming.

I Possible solutions:

◦ Teach programming.

◦ Takes too much time, and some students struggle.

◦ Use Excel with a template.

◦ Students bring some prior experience.
◦ Limited programming capacity.

◦ Provide Matlab programs (usable with Octave).

◦ Some modifications needed.
◦ If properly designed, the modifications are minimal!
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Making programming easy – SEIR simplot.m

%% DEFAULT SCENARIO DATA

beta = 0.5;

etc

V = 0;

%% INDEPENDENT VARIABLE DATA

xvals = [0.5,0.4,0.3,0.2];

%% COMPUTATION

for n=1:N

beta = xvals(n);

[S,E,I,R] = seir sim(beta,eta,gamma,E0,I0,V)

etc

end
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Parameter studies
I How does the extent of mask use affect key outcomes:

maximum I , final S , times for these events?

◦ Use SEIR paramstudy.m.
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Reporting results

I Numbers and formulas are of no intrinsic value as results.

◦ Results should be reported visually and verbally.

I Insist that graphs adequately display results.

◦ Good choices for axis limits.
◦ Descriptive captions.

I Insist on meaningful communication of results.

◦ Verbal descriptions, like “The function increases to a
maximum and then decreases to 0”, are not enough.

◦ Insist on explanations and/or interpretations, like “The
infectious population reaches a maximum because transmission
slows down as the number of susceptibles decreases.”
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Reporting results

Resources

I Thanks for “coming”!

I See https://www.math.unl.edu/SIR-modeling for

◦ Details on the classroom activity, including directions for an
online implementation;

◦ Materials for using spreadsheets to teach epidemic modeling;
◦ Links to some useful resources.

I See https://www.math.unl.edu/covid-module for similar
spreadsheet materials.

I These pages will be updated soon to include Matlab
materials, SEIR versions, and notes and videos from my
epidemiology class just finished.

I Shoot me an email to receive updates on my materials.
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