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Overview

Many models in biology are unnecessarily complicated.

I Occam’s Razor:
“Entities must not be multiplied beyond necessity.”

How do we avoid unnecessary complication?

I Quantitative Simplification:
Omit terms that have no qualitative effect and a quantitative
effect smaller than the uncertainty in parameter values.

I Empirical Simplification:
Use the Akaike Information Criterion (AIC) to determine when
better accuracy is not enough to justify additional complexity.

I Analytical Simplification:
Use asymptotic approximation after nondimensionalizing
with suitable scales.



HIV Model (Stafford et al, J Theo Bio, 2000)

dS

dT
= R − DS − BVS , (1)

dI

dT
= BVS − DI −MI , (2)

dV

dT
= PI − CV . (3)

I R: constant rate of healthy cell production.

I DS and DI : rates of natural cell death.

I MI : rate of virus-induced cell death.

I BVS : rate of infection.

I PI : rate of virion production.

I CV : clearance rate for virions.

I No latency.



Brute Force Analysis

I Disease-Free Equilibrium (DF)

I = V = 0, S =
R

D
, J =

 −D 0 −BR/D
0 −(D + M) BR/D
0 P −C


I Endemic Disease Equilibrium (ED)

S =
C(D +M)

BP
, V =

BPR − DC(D +M)

BC(D +M)
, I =

BPR − DC(D +M)

BP(D +M)

J =

 − BPR
C(D+M) 0 −C(D+M)

P
BPR

C(D+M) − D −(D + M) C(D+M)
P

0 P −C





So What?

S =
C(D +M)

BP
, V =

BPR − DC(D +M)

BC(D +M)
, I =

BPR − DC(D +M)

BP(D +M)

J =

 − BPR
C(D+M) 0 −C(D+M)

P
BPR

C(D+M) − D −(D + M) C(D+M)
P

0 P −C


I All 6 parameters appear in the equilibrium formulas.

I Stability calculations require 3× 3 eigenvalues or
Routh-Hurwitz conditions.

I Calculations of determinant etc are messy.

I Relationship between existence requirements of ED and
stability requirements of DF are unclear.

I We can do MUCH better!



Families of Functions
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The model y(x) =
qx

a + x
, with (q, a) values of (2, 0.5) (dashed),

(2, 2) (solid), (0.5, 2) (dash-dot).



A Dimensionless Version
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The model y(x) =
qx

a + x
, using two different labeling schemes.

The quantities
y

q
and

x

a
are dimensionless counterparts to y and x .

I Moreover, the quantities q and a are representative of the
meaningful values of y and x .

I The references for nondimensionalization should be scales
(representative values).



Scaling for the HIV model

dS

dT
= R − DS − BVS , (1)

dI

dT
= BVS − DI −MI , (2)

dV

dT
= PI − CV . (3)

I The normal population of healthy cells is R
D .

I The mean residence time for healthy cells is 1
D .

I A tight upper bound on infected cells is R
M+D .

I A tight upper bound on virion population is P
C

R
M+D .

Use

S =
R

D
s,

d

dT
= D

d

dt
, I =

R

M + D
i , V =

P

C

R

M + D
v .



Choosing the Dimensionless Parameters

ds

dt
= 1−s− BPR

DC (M + D)
vs,

di

dt
=

BPR

D2C
vs −M + D

D
i ,

dv

dt
=

C

D
(i−v)

I Dimensional analysis contributes nothing to the choice of
parameters (or the scales, for that matter)!

I Prefer parameters that factor out of equations.

I Prefer parameters with meaningful biological comparisons.

I Make parameters small rather than large.

D

M + D

di

dt
=

BPR

DC (M + D)
vs − i ,

D

M + D

M + D

C

dv

dt
= i − v

I D/(M + D) is (healthy cell turnover)/(infected cell death).

I (M + D)/C is (infected cell death)/(virion clearance).



So What?

s ′ = 1− s − bvs, εi ′ = bvs − i , θεv ′ = i − v

s =
1

b
, i = v = 1− 1

b

J =

 −b 0 −1
ε−1(b − 1) −ε−1 ε−1

0 θ−1ε−1 −θ−1ε−1


instead of

S =
C(D +M)

BP
, V =

BPR − DC(D +M)

BC(D +M)
, I =

BPR − DC(D +M)

BP(D +M)

J =

 − BPR
C(D+M) 0 −C(D+M)

P
BPR

C(D+M) − D −(D + M) C(D+M)
P

0 P −C


I 3 parameters instead of 6; equilibria have only 1 parameter.



Asymptotic Reduction

Nondimensionalization always yields algebraic simplification. With
careful choice of scales, it can yield much more.

s ′ = 1− s − bvs, εi ′ = bvs − i , θεv ′ = i − v

Estimated parameter values are ε = 0.025, θ = 0.1. The
approximation θε→ 0 reduces the v equation to v ∼ i .
This reduces the system to two components:

s ′ = 1− s − bis, εi ′ = i(bs − 1)

The analysis of this model is much simpler. Nullcline analysis is
also possible.



Numerical Validation – plots are for 3D model

First plot has v(0) = 0.01; others have v(0) = 2
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I The error is significant for only the first few hours.

I The initial infection level only affects the incubation process.



Scaling with Competing Processes

How do we scale

dX

dT
= RX

(
1− X

K

)
− SX

X + H
?

Forget dimensional analysis. We need biological insight!

I If we think environmental capacity is the primary limitation,
we expect X comparable to K , so we choose K .

x ′ = x

(
1− x − sx

1 + εx

)
, ε =

K

H
< 1, s =

S

RH
= O(1)

I If we think consumption is the primary limitation, we expect
X comparable to H, so we choose H.

x ′ = x

(
1− εx − sx

1 + x

)
, ε =

H

K
= O(1), s =

S

RH
= Os(1)
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An Extreme Example: the Spruce Budworm Model
(Ludwig et al, J Anim Ecol, 1978;
Brauer and Castillo-Chavez, Math. Models in Pop. Bio....;
Ledder, Math Biosci Eng, 2007)

Dimensionless variables:
B: consumer (insect) population
E : resource health (≈ leaves/area)
S : resource density (≈ surface area)
λ: fixed predator (bird) population

ε1B
′ = B

[
1− B

S

(
δ2 + E 2

E 2

)]
− λB2

ν2S2 + B2

ε2E
′ = E (1− E )− γB

S

(
E 2

δ2 + E 2

)

S ′ = S

(
1− S

E

)



The Spruce Budworm Model

ε1B
′ = B

[
1− B

S

(
δ2 + E 2

E 2

)]
− λB2

ν2S2 + B2

ε2E
′ = E (1− E )− γB

S

(
E 2

δ2 + E 2

)

S ′ = S

(
1− S

E

)
I ε1 ≈ 0.09, ε2 ≈ 0.07: relatively fast insect and leaf dynamics
I δ ≈ 0.02: very low leaf count decreases insect capacity
I λ ≈ 0.004: predation only matters when B � 1
I ν ≈ 0.003: predation saturates quickly (efficient predators)

I high S ,E → high B → low E → low S → low B →
high predation → very low B → E recovers → S recovers →
B recovers



The “Standard” Scenario
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0–0.4 phase I infestation
0.4–1.5 phase II defoliation (high predation, not limiting)
1.5–1.7 phase III crash
1.7–6.2 phase IV dormant (predation and resource limiting)
6.2–13.4 phase I proliferation (predation limiting)


