Using Scaling and Asymptotics to Simplify Dynamical Systems

Glenn Ledder

Department of Mathematics
University of Nebraska-Lincoln
gledder@unl.edu
June 13, 2013

Overview

Many models in biology are unnecessarily complicated.

- Occam's Razor:
"Entities must not be multiplied beyond necessity."
How do we avoid unnecessary complication?
- Quantitative Simplification:

Omit terms that have no qualitative effect and a quantitative effect smaller than the uncertainty in parameter values.

- Empirical Simplification:

Use the Akaike Information Criterion (AIC) to determine when better accuracy is not enough to justify additional complexity.

- Analytical Simplification:

Use asymptotic approximation after nondimensionalizing with suitable scales.

HIV Model (Stafford et al, J Theo Bio, 2000)

$$
\begin{gather*}
\frac{d S}{d T}=R-D S-B V S, \tag{1}\\
\frac{d I}{d T}=B V S-D I-M I, \tag{2}\\
\frac{d V}{d T}=P I-C V . \tag{3}
\end{gather*}
$$

- R : constant rate of healthy cell production.
- DS and DI: rates of natural cell death.
- MI: rate of virus-induced cell death.
- BVS: rate of infection.
- PI: rate of virion production.
- CV: clearance rate for virions.
- No latency.

Brute Force Analysis

- Disease-Free Equilibrium (DF)

$$
I=V=0, \quad S=\frac{R}{D}, \quad J=\left(\begin{array}{ccc}
-D & 0 & -B R / D \\
0 & -(D+M) & B R / D \\
0 & P & -C
\end{array}\right)
$$

- Endemic Disease Equilibrium (ED)

$$
\begin{gathered}
S=\frac{C(D+M)}{B P}, \quad V=\frac{B P R-D C(D+M)}{B C(D+M)}, \quad I=\frac{B P R-D C(D+M)}{B P(D+M)} \\
J=\left(\begin{array}{ccc}
-\frac{B P R}{C(D+M)} & 0 & -\frac{C(D+M)}{P} \\
\frac{B P R}{C(D+M)}-D & -(D+M) & \frac{C(D+M)}{P} \\
0 & P & -C
\end{array}\right)
\end{gathered}
$$

So What?

$$
\begin{gathered}
S=\frac{C(D+M)}{B P}, \quad V=\frac{B P R-D C(D+M)}{B C(D+M)}, \quad I=\frac{B P R-D C(D+M)}{B P(D+M)} \\
J=\left(\begin{array}{ccc}
-\frac{B P R}{C(D+M)} & 0 & -\frac{C(D+M)}{P} \\
\frac{B P R}{C(D+M)}-D & -(D+M) & \frac{C(D+M)}{P} \\
0 & P & -C
\end{array}\right)
\end{gathered}
$$

- All 6 parameters appear in the equilibrium formulas.
- Stability calculations require 3×3 eigenvalues or Routh-Hurwitz conditions.
- Calculations of determinant etc are messy.
- Relationship between existence requirements of ED and stability requirements of DF are unclear.
- We can do MUCH better!

Families of Functions

The model $y(x)=\frac{q x}{a+x}$, with (q, a) values of $(2,0.5)$ (dashed), $(2,2)$ (solid), $(0.5,2)$ (dash-dot).

A Dimensionless Version

The model $y(x)=\frac{q x}{a+x}$, using two different labeling schemes.
The quantities $\frac{y}{q}$ and $\frac{x}{a}$ are dimensionless counterparts to y and x.

- Moreover, the quantities q and a are representative of the meaningful values of y and x.
- The references for nondimensionalization should be scales (representative values).

Scaling for the HIV model

$$
\begin{gather*}
\frac{d S}{d T}=R-D S-B V S, \tag{1}\\
\frac{d I}{d T}=B V S-D I-M I, \tag{2}\\
\frac{d V}{d T}=P I-C V . \tag{3}
\end{gather*}
$$

- The normal population of healthy cells is $\frac{R}{D}$.
- The mean residence time for healthy cells is $\frac{1}{D}$.
- A tight upper bound on infected cells is $\frac{R}{M+D}$.
- A tight upper bound on virion population is $\frac{P}{C} \frac{R}{M+D}$.

Use

$$
S=\frac{R}{D} s, \quad \frac{d}{d T}=D \frac{d}{d t}, \quad I=\frac{R}{M+D} i, \quad V=\frac{P}{C} \frac{R}{M+D} v
$$

Choosing the Dimensionless Parameters

$$
\frac{d s}{d t}=1-s-\frac{B P R}{D C(M+D)} v s, \quad \frac{d i}{d t}=\frac{B P R}{D^{2} C} v s-\frac{M+D}{D} i, \quad \frac{d v}{d t}=\frac{C}{D}(i-v)
$$

- Dimensional analysis contributes nothing to the choice of parameters (or the scales, for that matter)!
- Prefer parameters that factor out of equations.
- Prefer parameters with meaningful biological comparisons.
- Make parameters small rather than large.

$$
\frac{D}{M+D} \frac{d i}{d t}=\frac{B P R}{D C(M+D)} v s-i, \quad \frac{D}{M+D} \frac{M+D}{C} \frac{d v}{d t}=i-v
$$

- $D /(M+D)$ is (healthy cell turnover)/(infected cell death).
- $(M+D) / C$ is (infected cell death)/(virion clearance).

So What?

$$
\begin{gathered}
s^{\prime}=1-s-b v s, \\
s=\frac{1}{b}, \\
i=v=1 i^{\prime}=b v s-i, \quad \theta \epsilon v^{\prime}=i-v \\
J=\left(\begin{array}{ccc}
-b & 0 & -1 \\
\epsilon^{-1}(b-1) & -\epsilon^{-1} & \epsilon^{-1} \\
0 & \theta^{-1} \epsilon^{-1} & -\theta^{-1} \epsilon^{-1}
\end{array}\right)
\end{gathered}
$$

instead of

$$
\begin{gathered}
S=\frac{C(D+M)}{B P}, \quad V=\frac{B P R-D C(D+M)}{B C(D+M)}, \quad I=\frac{B P R-D C(D+M)}{B P(D+M)} \\
J=\left(\begin{array}{ccc}
-\frac{B P R}{C(D+M)} & 0 & -\frac{C(D+M)}{P} \\
\frac{B P R}{C(D+M)}-D & -(D+M) & \frac{C(D+M)}{P} \\
0 & P & -C
\end{array}\right)
\end{gathered}
$$

- 3 parameters instead of 6 ; equilibria have only 1 parameter.

Asymptotic Reduction

Nondimensionalization always yields algebraic simplification. With careful choice of scales, it can yield much more.

$$
s^{\prime}=1-s-b v s, \quad \epsilon i^{\prime}=b v s-i, \quad \theta \epsilon v^{\prime}=i-v
$$

Estimated parameter values are $\epsilon=0.025, \theta=0.1$. The approximation $\theta \epsilon \rightarrow 0$ reduces the v equation to $v \sim i$.
This reduces the system to two components:

$$
s^{\prime}=1-s-b i s, \quad \epsilon i^{\prime}=i(b s-1)
$$

The analysis of this model is much simpler. Nullcline analysis is also possible.

Numerical Validation - plots are for 3D model

First plot has $v(0)=0.01$; others have $v(0)=2$

- The error is significant for only the first few hours.
- The initial infection level only affects the incubation process.

Scaling with Competing Processes

How do we scale

$$
\frac{d X}{d T}=R X\left(1-\frac{X}{K}\right)-\frac{S X}{X+H} ?
$$

Forget dimensional analysis. We need biological insight!

- If we think environmental capacity is the primary limitation, we expect X comparable to K, so we choose K.

$$
x^{\prime}=x\left(1-x-\frac{s x}{1+\epsilon x}\right), \quad \epsilon=\frac{K}{H}<1, \quad s=\frac{S}{R H}=O(1)
$$

- If we think consumption is the primary limitation, we expect X comparable to H, so we choose H.

$$
x^{\prime}=x\left(1-\epsilon x-\frac{s x}{1+x}\right), \quad \epsilon=\frac{H}{K}=O(1), \quad s=\frac{S}{R H}=O_{s}(1)
$$

References

Everything in this talk so far (and much more!) can be found in
G. Ledder, Mathematics for the Life Sciences: Calculus, Modeling, Probability, and Dynamical Systems, Springer, August 2013.
http://www.math.unl.edu/~gledder1/MLS/ gledder@unl.edu
(With apologies for shameless self-promotion)

An Extreme Example: the Spruce Budworm Model

 (Ludwig et al, J Anim Ecol, 1978; Brauer and Castillo-Chavez, Math. Models in Pop. Bio....; Ledder, Math Biosci Eng, 2007)Dimensionless variables:
B : consumer (insect) population
E : resource health (\approx leaves/area)
S : resource density (\approx surface area)
λ : fixed predator (bird) population

$$
\begin{gathered}
\epsilon_{1} B^{\prime}=B\left[1-\frac{B}{S}\left(\frac{\delta^{2}+E^{2}}{E^{2}}\right)\right]-\frac{\lambda B^{2}}{\nu^{2} S^{2}+B^{2}} \\
\epsilon_{2} E^{\prime}=E(1-E)-\frac{\gamma B}{S}\left(\frac{E^{2}}{\delta^{2}+E^{2}}\right) \\
S^{\prime}=S\left(1-\frac{S}{E}\right)
\end{gathered}
$$

The Spruce Budworm Model

$$
\begin{gathered}
\epsilon_{1} B^{\prime}=B\left[1-\frac{B}{S}\left(\frac{\delta^{2}+E^{2}}{E^{2}}\right)\right]-\frac{\lambda B^{2}}{\nu^{2} S^{2}+B^{2}} \\
\epsilon_{2} E^{\prime}=E(1-E)-\frac{\gamma B}{S}\left(\frac{E^{2}}{\delta^{2}+E^{2}}\right) \\
S^{\prime}=S\left(1-\frac{S}{E}\right)
\end{gathered}
$$

- $\epsilon_{1} \approx 0.09, \quad \epsilon_{2} \approx 0.07$: relatively fast insect and leaf dynamics
- $\delta \approx 0.02$: very low leaf count decreases insect capacity
- $\lambda \approx 0.004$: predation only matters when $B \ll 1$
- $\nu \approx 0.003$: predation saturates quickly (efficient predators)
- high $S, E \rightarrow$ high $B \rightarrow$ low $E \rightarrow$ low $S \rightarrow$ low $B \rightarrow$ high predation \rightarrow very low $B \rightarrow E$ recovers $\rightarrow S$ recovers \rightarrow B recovers

The "Standard" Scenario

$0-0.4$	phase I	infestation
$0.4-1.5$	phase II	defoliation (high predation, not limiting)
$1.5-1.7$	phase III	crash
$1.7-6.2$	phase IV	dormant (predation and resource limiting)
$6.2-13.4$	phase I	proliferation (predation limiting)

