Using Scaling and Asymptotics to Simplify Dynamical Systems

Glenn Ledder

Department of Mathematics University of Nebraska-Lincoln gledder@unl.edu

June 13, 2013

Overview

Many models in biology are unnecessarily complicated.

Occam's Razor: "Entities must not be multiplied beyond necessity."

How do we avoid unnecessary complication?

- Quantitative Simplification: Omit terms that have no qualitative effect and a quantitative effect smaller than the uncertainty in parameter values.
- Empirical Simplification: Use the Akaike Information Criterion (AIC) to determine when better accuracy is not enough to justify additional complexity.
- ► Analytical Simplification:
 Use asymptotic approximation after nondimensionalizing with suitable scales.

HIV Model (Stafford et al, J Theo Bio, 2000)

$$\frac{dS}{dT} = R - DS - BVS , \qquad (1)$$

$$\frac{dI}{dT} = BVS - DI - MI , \qquad (2)$$

$$\frac{dV}{dT} = PI - CV \ . \tag{3}$$

- R: constant rate of healthy cell production.
- ▶ *DS* and *DI*: rates of natural cell death.
- MI: rate of virus-induced cell death.
- ▶ *BVS*: rate of infection.
- PI: rate of virion production.
- CV: clearance rate for virions.
- ► No latency.

Brute Force Analysis

▶ Disease-Free Equilibrium (DF)

$$I = V = 0, \quad S = \frac{R}{D}, \quad J = \begin{pmatrix} -D & 0 & -BR/D \\ 0 & -(D+M) & BR/D \\ 0 & P & -C \end{pmatrix}$$

Endemic Disease Equilibrium (ED)

$$S = \frac{C(D+M)}{BP}, \quad V = \frac{BPR - DC(D+M)}{BC(D+M)}, \quad I = \frac{BPR - DC(D+M)}{BP(D+M)}$$

$$J = \begin{pmatrix} -\frac{BPR}{C(D+M)} & 0 & -\frac{C(D+M)}{P} \\ \frac{BPR}{C(D+M)} - D & -(D+M) & \frac{C(D+M)}{P} \\ 0 & P & -C \end{pmatrix}$$

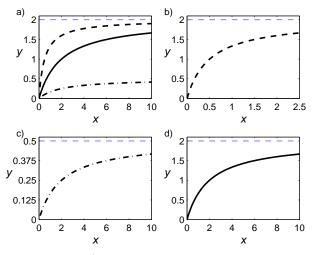
So What?

$$S = \frac{C(D+M)}{BP}, \quad V = \frac{BPR - DC(D+M)}{BC(D+M)}, \quad I = \frac{BPR - DC(D+M)}{BP(D+M)}$$

$$J = \begin{pmatrix} -\frac{BPR}{C(D+M)} & 0 & -\frac{C(D+M)}{P} \\ \frac{BPR}{C(D+M)} - D & -(D+M) & \frac{C(D+M)}{P} \\ 0 & P & -C \end{pmatrix}$$

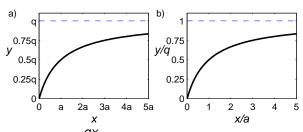
- All 6 parameters appear in the equilibrium formulas.
- Stability calculations require 3 × 3 eigenvalues or Routh-Hurwitz conditions.
- Calculations of determinant etc are messy.
- Relationship between existence requirements of ED and stability requirements of DF are unclear.
- We can do MUCH better!

Families of Functions



The model $y(x) = \frac{qx}{a+x}$, with (q, a) values of (2, 0.5) (dashed), (2, 2) (solid), (0.5, 2) (dash-dot).

A Dimensionless Version



The model $y(x) = \frac{qx}{a+x}$, using two different labeling schemes.

The quantities $\frac{y}{q}$ and $\frac{x}{a}$ are dimensionless counterparts to y and x.

- Moreover, the quantities q and a are representative of the meaningful values of y and x.
- ➤ The references for nondimensionalization should be scales (representative values).

Scaling for the HIV model

$$\frac{dS}{dT} = R - DS - BVS , \qquad (1)$$

$$\frac{dI}{dT} = BVS - DI - MI , \qquad (2)$$

$$\frac{dV}{dT} = PI - CV \ . \tag{3}$$

- ▶ The normal population of healthy cells is $\frac{R}{D}$.
- ► The mean residence time for healthy cells is $\frac{1}{D}$.
- ► A tight upper bound on infected cells is $\frac{R}{M+D}$.
- ► A tight upper bound on virion population is $\frac{P}{C} \frac{R}{M+D}$.

Use

$$S = \frac{R}{D} s$$
, $\frac{d}{dT} = D \frac{d}{dt}$, $I = \frac{R}{M+D} i$, $V = \frac{P}{C} \frac{R}{M+D} v$.

Choosing the Dimensionless Parameters

$$\frac{ds}{dt} = 1 - s - \frac{BPR}{DC(M+D)} vs, \quad \frac{di}{dt} = \frac{BPR}{D^2C} vs - \frac{M+D}{D} i, \quad \frac{dv}{dt} = \frac{C}{D} (i-v)$$

- Dimensional analysis contributes nothing to the choice of parameters (or the scales, for that matter)!
- Prefer parameters that factor out of equations.
- Prefer parameters with meaningful biological comparisons.
- ► Make parameters small rather than large.

$$\frac{D}{M+D}\frac{di}{dt} = \frac{BPR}{DC(M+D)} vs - i, \quad \frac{D}{M+D}\frac{M+D}{C}\frac{dv}{dt} = i - v$$

- ▶ D/(M+D) is (healthy cell turnover)/(infected cell death).
- ightharpoonup (M+D)/C is (infected cell death)/(virion clearance).

So What?

$$s' = 1 - s - bvs, \qquad \epsilon i' = bvs - i, \qquad \theta \epsilon v' = i - v$$

$$s = \frac{1}{b}, \quad i = v = 1 - \frac{1}{b}$$

$$J = \begin{pmatrix} -b & 0 & -1 \\ \epsilon^{-1}(b-1) & -\epsilon^{-1} & \epsilon^{-1} \\ 0 & \theta^{-1}\epsilon^{-1} & -\theta^{-1}\epsilon^{-1} \end{pmatrix}$$

instead of

$$S = \frac{C(D+M)}{BP}, \quad V = \frac{BPR - DC(D+M)}{BC(D+M)}, \quad I = \frac{BPR - DC(D+M)}{BP(D+M)}$$

$$J = \begin{pmatrix} -\frac{BPR}{C(D+M)} & 0 & -\frac{C(D+M)}{P} \\ \frac{BPR}{C(D+M)} - D & -(D+M) & \frac{C(D+M)}{P} \\ 0 & P & -C \end{pmatrix}$$

Asymptotic Reduction

Nondimensionalization always yields algebraic simplification. With careful choice of scales, it can yield much more.

$$s' = 1 - s - bvs$$
, $\epsilon i' = bvs - i$, $\theta \epsilon v' = i - v$

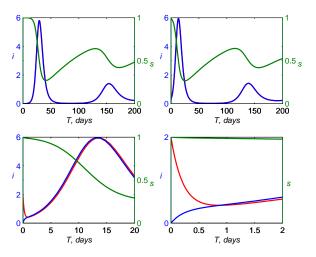
Estimated parameter values are $\epsilon=0.025, \ \theta=0.1.$ The approximation $\theta\epsilon\to 0$ reduces the v equation to $v\sim i.$ This reduces the system to two components:

$$s' = 1 - s - bis$$
, $\epsilon i' = i(bs - 1)$

The analysis of this model is much simpler. Nullcline analysis is also possible.

Numerical Validation - plots are for 3D model

First plot has v(0) = 0.01; others have v(0) = 2



- ▶ The error is significant for only the first few hours.
- ► The initial infection level only affects the incubation process.

Scaling with Competing Processes

How do we scale

$$\frac{dX}{dT} = RX\left(1 - \frac{X}{K}\right) - \frac{SX}{X + H}?$$

Forget dimensional analysis. We need biological insight!

If we think environmental capacity is the primary limitation, we expect X comparable to K, so we choose K.

$$x' = x \left(1 - x - \frac{sx}{1 + \epsilon x} \right), \qquad \epsilon = \frac{K}{H} < 1, \quad s = \frac{S}{RH} = O(1)$$

▶ If we think consumption is the primary limitation, we expect X comparable to H, so we choose H.

$$x' = x \left(1 - \epsilon x - rac{sx}{1+x}
ight), \quad \epsilon = rac{H}{K} = O(1), \ \ s = rac{S}{RH} = O_s(1)$$

References

Everything in this talk so far (and much more!) can be found in

G. Ledder, *Mathematics for the Life Sciences: Calculus, Modeling, Probability, and Dynamical Systems*, Springer, August 2013.

http://www.math.unl.edu/~gledder1/MLS/gledder@unl.edu

(With apologies for shameless self-promotion)

An Extreme Example: the Spruce Budworm Model

(Ludwig et al, J Anim Ecol, 1978;

Brauer and Castillo-Chavez, Math. Models in Pop. Bio....;

Ledder, Math Biosci Eng, 2007)

Dimensionless variables:

B: consumer (insect) population

E: resource health (\approx leaves/area)

S: resource density (\approx surface area)

 λ : fixed predator (bird) population

$$\epsilon_1 B' = B \left[1 - \frac{B}{S} \left(\frac{\delta^2 + E^2}{E^2} \right) \right] - \frac{\lambda B^2}{\nu^2 S^2 + B^2}$$

$$\epsilon_2 E' = E(1 - E) - \frac{\gamma B}{S} \left(\frac{E^2}{\delta^2 + E^2} \right)$$

$$S' = S \left(1 - \frac{S}{E} \right)$$

The Spruce Budworm Model

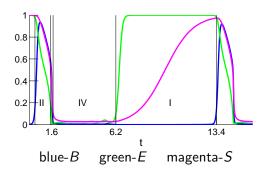
$$\epsilon_1 B' = B \left[1 - \frac{B}{S} \left(\frac{\delta^2 + E^2}{E^2} \right) \right] - \frac{\lambda B^2}{\nu^2 S^2 + B^2}$$

$$\epsilon_2 E' = E(1 - E) - \frac{\gamma B}{S} \left(\frac{E^2}{\delta^2 + E^2} \right)$$

$$S' = S \left(1 - \frac{S}{E} \right)$$

- $ightharpoonup \epsilon_1 pprox 0.09, \ \epsilon_2 pprox 0.07$: relatively fast insect and leaf dynamics
- lacktriangledown \deltapprox 0.02: very low leaf count decreases insect capacity
- $ightharpoonup \lambda pprox 0.004$: predation only matters when $B \ll 1$
- $u \approx 0.003$: predation saturates quickly (efficient predators)

The "Standard" Scenario



```
0-0.4 phase I infestation
0.4-1.5 phase II defoliation (high predation, not limiting)
1.5-1.7 phase III crash
1.7-6.2 phase IV dormant (predation and resource limiting)
6.2-13.4 phase I proliferation (predation limiting)
```