Mathematical Modeling Via Multiple Representations

C. Diaz Eaton¹, ² and G. Ledder³

 1 Associate Professor, Digital and Computational Studies, Bates College 2 Director of Partnerships, QUBES

³Department of Mathematics, University of Nebraska-Lincoln

Annual Meeting for the Society for Mathematical Biology, 2019

Mathematical Modeling Via Multiple Representations

C. Diaz Eaton, and G. Ledder

Framework for Modeling via Representations

Resource-Limited Growth: An Example of Mathematical Modeling via Representations

> An Experiential Representation

Representation

Numerical Represent

ree Visual presentations

A Verbal Representation

A Symbolic Representatio

Outline

Framework for Modeling via Representations

Resource-Limited Growth: An Example of Mathematical Modeling via Representations

An Experiential Representation

A Numerical Representation

Three Visual Representations

A Verbal Representation

A Symbolic Representation

Computer Implementation

Mathematical Modeling Via Multiple Representations

C. Diaz Eaton, and G. Ledder

Framework for Modeling via Representations

Resource-Limited Growth: An Example of Mathematical Modeling via Representations

An Experientia

Representation

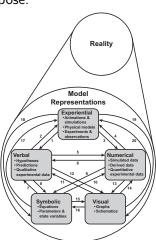
Numerical Represen

ree Visual

A Verbal Representation

A Symbolic Representatio

Computer Implementation


Models and Modeling

Definition

A **model** is a simplified, abstract or concrete representation of relationships and/or processes in the real world, constructed for some purpose.

"Rule-of-Five" Model Representations:

- Verbal
- Visual
- Symbolic
- Numerical
- Experiential

4 D F 4 PF 4 FF 4 FF

Mathematical Modeling Via Multiple Representations

C. Diaz Eaton, and G. Ledder

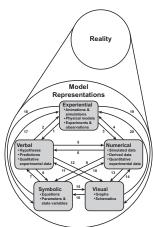
Framework for Modeling via Representations

Resource-Limited Growth: An Example of Mathematical Modeling via

- n Experiential
- A Numerical Representation
 - ree Visual presentations
- A Verbal Representation
 - A Symbolic Representation
 - omputer Implementation

Models and Modeling

Definition


Modeling is the act of moving between representations/models (arrow), checking model with reality and/or revising model.

Modeling activities

- Moving between representations/models (arrow)
- Checking model with reality
- Creating and revising model

Modeling process

- ► A set of modeling activities from reality to "good enough."
- Reality & experiential are key!
- Defined to include approaches like data science

Mathematical Modeling Via Multiple Representations

C. Diaz Eaton, and G. Ledder

Framework for Modeling via Representations

Resource-Limited Growth: An Example of Mathematical Modeling via Representations

- n Experiential
- A Numerical Representati
 - ree Visual presentations
- A Verbal Representati
- A Symbolic Representatio

The Challenge

Yogi Berra:

"In theory, there is no difference between theory and practice. In practice, there is."

- ▶ So how do we implement this theory in the classroom?
- With classroom projects that 'model' modeling with a directed sequence of modeling activities.

Mathematical Modeling Via Multiple Representations

C. Diaz Eaton, and G. Ledder

Framework for Modeling via Representations

Resource-Limited Growth: An Example of Mathematical Modeling via Representations

An Experiential

A Numerical Representa

ree Visual presentations

A Verbal Representation

- Theory without observation (natural and/or experimental) is mere speculation.
- Observation without theory is just a collection of data.
- Scientific progress is due to the combination of theory and observation.
- 2. Provide a rich experience of mathematical modeling
 - Use all five representations and make many connections.
- 3. Develop a sophisticated view of models in biology
 - Models are not depictions of reality; they are abstractions that under best circumstances have explanatory value.
- 4. Teach the principles of density-dependent growth

Mathematical Modeling Via Multiple Representations

C. Diaz Eaton, and G. Ledder

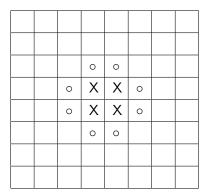
Framework for Modeling via Representations

Resource-Limited Growth: An Example of Mathematical Modeling via Representations

An Experiential

Numerical Rep

ee Visual resentations


A Verbal Representation

- Based on simple mechanisms.

- The real world is complicated.
 - Hard to collect data.
 - Many confounding complications.
 - Demographic stochasticity.
- The nature of science is more easily discovered using real data from an artificial world. (e.g., C.S. Holling, 1959)
 - Easy to collect data.

 - Must have demographic stochasticity!

Experiential – Materials and Setup

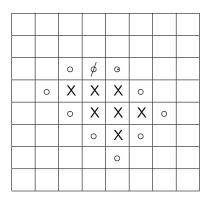
Time	Pop.	Prev.	Incr.
0	4	NA	NA
1		4	
2			
3			
4			
5			
÷	:	:	:
20			

X — square is occupied

○ — square is available

Mathematical Modeling Via Multiple Representations

C. Diaz Eaton, and G. Ledder


Framework for Modeling via Representations

Resource-Limited
Growth: An
Example of
Mathematical
Modeling via
Representations

An Experiential Representation

- A Numerical Representation
 - rree Visual
- A Verbal Representation
- A Symbolic Poprocentation
- A Symbolic Representation Computer Implementation

Experiential – Simulation Rules

X — square is occupied \circ — square is available

- 1. For each available square:
 - a. Roll one die for each adjacent occupied square.
 - b. If any die is 5 or 6, mark the square with a slash (/).
- Change the slashes into X's. Record population.
- 3. Mark new available squares with a circle (⋄).
- Stop when nearly all squares are occupied.

Mathematical Modeling Via Multiple Representations

C. Diaz Eaton, and G. Ledder

Framework for Modeling via Representations

Resource-Limited Growth: An Example of Mathematical Modeling via Representations

An Experiential Representation

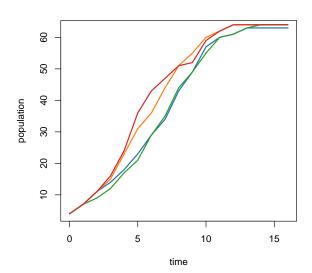
- A Numerical Representation
 - hree Visual
- A Verbal Representation
- A Symbolic Representation

Numerical - Lots of Data

Time	Pop.	Prev.	Incr.
0	4	NA	NA
1	7	4	3
2	11	7	4
3	15	11	4
4	23	15	8
5	31	23	8
6	36	31	5
7	44	36	8
8	51	44	7
9	55	51	4
10	60	55	5
11	62	60	2

Time	Pop.	Prev.	Incr.
0	4	NA	NA
1	7	4	3
2	11	7	4
3	14	11	3
4	18	14	4
5	23	18	5
6	29	23	6
7	34	29	5
8	43	34	9
9	49	43	6
10	57	49	8
11	60	57	3
12	61	60	1

Mathematical Modeling Via Multiple Representations


C. Diaz Eaton, and G. Ledder

Framework for Modeling via Representations

Resource-Limited Growth: An Example of Mathematical Modeling via Representations

- An Experiential
- A Numerical Representation
 - ree Visual presentations
- A Verbal Representation
- A Symbolic Representation

Visual – Population Graphs

Mathematical Modeling Via Multiple Representations

C. Diaz Eaton, and G. Ledder

Framework for Modeling via Representations

Resource-Limited Growth: An Example of Mathematical Modeling via Representations

An Experiential

A Numerical Representat

Three Visual Representations

A Verbal Representation

A Symbolic Representatio

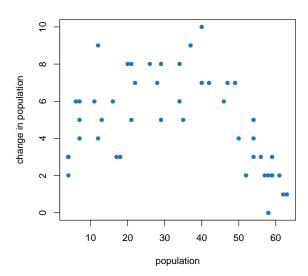
Can we think of other, possibly better, ways to plot the

▶ How about plotting population change vs population?

same for the same populations?

Notice that slopes of the orange and green lines are the

Growth: An Modeling via


Representations

Other ideas?

data?

- Framework for
- Resource-Limited

Visual - Change vs Population

Mathematical Modeling Via Multiple Representations

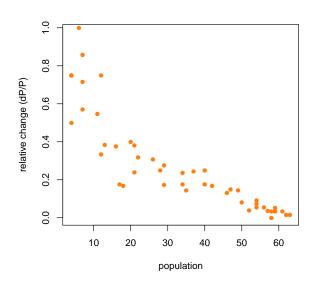
C. Diaz Eaton, and G. Ledder

Framework for Modeling via Representations

Resource-Limited Growth: An Example of Mathematical Modeling via

An Experiential

A Numerical Representation


Three Visual

Representations

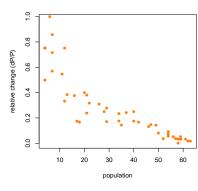
A Verbal Representation

A Symbolic Representation Computer Implementation

Visual – Relative Change vs Population

Mathematical Modeling Via Multiple Representations

C. Diaz Eaton. and G. Ledder


Modeling via

Resource-Limited

Three Visual

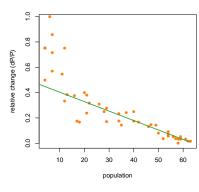
Representations

Verbal – An Empirical Hypothesis

- Ignore the demographic stochasticity (scatter).
 - Is there a signal hiding under the noise?

Mathematical Modeling Via Multiple Representations

Diaz Eaton. and G. Ledder


Modeling via Representations

Resource-Limited Growth: An Modeling via Representations

A Verbal Representation

Maybe the relative change is a linear function of the population, reaching 0 when the space is full.

Verbal – An Empirical Hypothesis

Ignore the demographic stochasticity (scatter).

> Is there a signal hiding under the noise?

Maybe the relative change is a linear function of the population, reaching 0 when the space is full. Mathematical Modeling Via Multiple Representations

C. Diaz Eaton, and G. Ledder

Framework for Modeling via Representations

Resource-Limited Growth: An Example of Mathematical Modeling via Representations

An Experiential

Numerical Representat

ee Visual

A Verbal Representation

A Symbolic Representatio

omputer Implementation

Discrete

$$\frac{\Delta P}{P} = r \left(1 - \frac{P}{K} \right)$$

or

$$\Delta P = rP\left(1 - \frac{P}{K}\right)$$

Continuous

$$\frac{dP/dt}{P} = r\left(1 - \frac{P}{K}\right)$$

or

$$\frac{dP}{dt} = rP\left(1 - \frac{P}{K}\right)$$

We need numerical implementation of a statistical method to fit r to the data (given K).

(See Ledder, Coll Math J, 47 (109), 2017.)

4日ト4間ト4目ト4目ト ヨ めなべ

Mathematical Modeling Via Multiple Representations

C. Diaz Eaton, and G. Ledder

Framework for Modeling via Representations

Resource-Limited Growth: An Example of Mathematical Modeling via Representations

n Experiential

A Numerical Representat

ree Visual presentations

A Verbal Representation

A Symbolic Representation

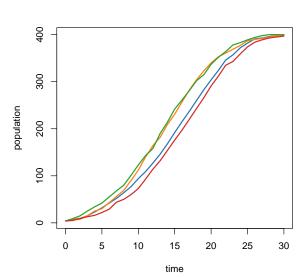
omputer Implementation

- So far, we're working with very limited data (like real ecologists) and a very simple setting. With a computer simulation, we can add detail and collect much more data quickly.
- PopGrowth.R (GL) and LogGrowth.nlogo (M.D. LaMar)
 - o arena size, $8 \le s \le 50$, best at about 20
 - o birth probability, 0 < b < 1, best at 0.1 to 0.8
 - o death probability, must be $0 \le d < b$, best at 0 to b/4
 - o number of trials, 1 to 4
 - o starting setup: center or edge
 - o curve fit options: none, r only, r and K

Mathematical Modeling Via Multiple Representations

C. Diaz Eaton, and G. Ledder

Framework for Modeling via Representations


Resource-Limited Growth: An Example of Mathematical Modeling via Representations

An Experientia Representation

A Numerical Representation

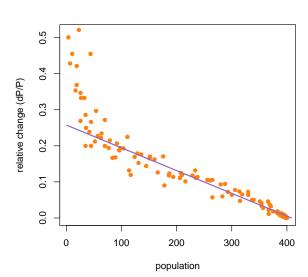
presentations

A Verbal Representation

Mathematical Modeling Via Multiple Representations

C. Diaz Eaton, and G. Ledder

Framework for Modeling via Representations


Resource-Limited Growth: An Example of Mathematical Modeling via Representations

An Experiential

A Numerical Representatio

ree Visual

A Verbal Representation

Mathematical Modeling Via Multiple Representati<u>ons</u>

C. Diaz Eaton, and G. Ledder

Framework for Modeling via Representations

Resource-Limited Growth: An Example of Mathematical Modeling via Representations

An Experiential

A Numerical Representation

rree Visual

A Verbal Representation

system.

Remember our objectives:

explanatory value.

Computer Implementation

But the model does a great job of predicting the results.

• We actually know the true biological processes, which

3. Develop a sophisticated view of models in biology

Models are not depictions of reality; they are

In this study, we developed a model for a synthetic

are completely different from the model.

abstractions that under best circumstances have