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1 Mathematical Model

Discrete vs Continuous Models

Discrete or Continuous?

I A number of issues influence whether a modeler chooses
discrete time or continuous time:

◦ Data is often collected at discrete times. (Red herring.)

◦ Discrete models are easier to understand conceptually. (Red
herring.)

◦ Life history events are synchronized for some systems.

◦ Discrete time models can exhibit instabilities that cannot
happen in continuous time.

I We should use discrete time when life history events are
synchronized and continuous time when they are not.
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1 Mathematical Model

A Mixed Time Model

Mixed Time Model, components

I Suppose a consumer that stores resources for an annual
reproductive event consumes a resource that grows
continuously.

I To achieve the right time choices, we need

◦ A discrete model that tracks resource level and consumer
population at an annual census, with

◦ An embedded continuous model that tracks resource levels and
consumer population during the time between census events.

continuous discrete

Time 0 < s < 1 t = 0, 1, . . .
Resource Biomass F (s) Ut

Consumer Population X (s) Vt
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1 Mathematical Model

A Mixed Time Model

Mixed Time Model, discrete system overview

I Ut and Vt are the resource level and consumer population
after the birth pulse between year t and year t + 1.

◦ U0 and V0 are the initial conditions for year 1.

I The (U,V ) system is then defined by a discrete map

Ut+1 = P(Ut ,Vt); Vt+1 = Q(Ut ,Vt),

where the functions P and Q are determined by the
continuous dynamics of year t along with the birth pulse
between years t and t + 1.
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1 Mathematical Model

A Mixed Time Model

Mixed Time Model, continuous time equations

I The continuous model must track the resource level F , the
consumer population X , and the cumulative resource
acquisition per consumer b.

dF

ds
= ρF

(
1 − F

K

)
− aFX , F (0) = Ut ; (1)

dX

ds
= −µX , X (0) = Vt ; (2)

db

ds
= θaF , b(0) = 0. (3)

◦ θ is the number of offspring that can be produced from one
unit of resource consumption.
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1 Mathematical Model

A Mixed Time Model

Mixed Time Model, birth pulse

I Resource levels carry over from discrete time t to s = 0 and
from s = 1 to discrete time t + 1.

F (0) = Ut , Ut+1 = F (1); (4)

I Adult consumers carry over from discrete time t to s = 0 and
from s = 1 to discrete time t + 1, while stored biomass
becomes new consumers at discrete time t.

X (0) = Vt , Vt+1 = [1 + b(1)] X (1); (5)
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1 Mathematical Model

A Mixed Time Model

Dimensionless Version

dF

ds
= ρF

(
1 − F

K

)
− aFX , F (0) = Ut , Ut+1 = F (1);

dX

ds
= −µX , X (0) = Vt , Vt+1 = [1 + b(1)] X (1);

db

ds
= θaF , b(0) = 0.

Scale F ,U by K and X ,V by ρ/a; time is already scaled.

df

ds
= ρf (1 − f − x), f (0) = ut , ut+1 = f (1); (6)

dx

ds
= −µx , x(0) = vt , vt+1 = [1 + b(1)] x(1); (7)

db

ds
= αf , b(0) = 0. (8)
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2 Fixed Point Analysis

Analysis Overview

I There are three types of possible fixed points:

1. Extinction

2. Resource only

3. Coexistence

I With careful analysis, we will

1. Show that the resource always persists.

2. Determine a simple criterion for consumer persistence.

3. Show that the consumer persistence criterion guarantees a
unique coexistence fixed point.

4. Identify the [least complicated] pair of inequalities for
stability of the coexistence fixed point.
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2 Fixed Point Analysis

Resource Persistence

Resource Persistence

I In the absence of the consumer, the resource level simply
satisfies the logistic growth equation

df

ds
= f (1 − f ),

for all time, there being no need for a discrete time structure.

I The consumer gains in population only through consumption
of the resource.

I Therefore, the model includes no mechanism for driving the
resource level to 0.

◦ We’ll see that the resource level can be very low for some
parameter regimes.



A Consumer-Resource Model with Synchronized Reproduction

2 Fixed Point Analysis

Consumer Persistence

Consumer Persistence

I The consumer persists if and only if the resource-only fixed
point f =u=1, x =v =0 is asymptotically stable.

I An equivalent but much simpler approach is to just check
whether the resource-only fixed point is stable with respect to
an initial perturbation in the consumer population.

I The continuous time problem for x reduces to

dx

ds
= −µx , x(0) = v0 = ε, v1 = [1 + b(1)] x(1),

b(1) =

∫ 1

0
αf ds = α[1 − O(ε)].

I Persistence is defined by v1/v0 ≥ 1, or

(α + 1)e−µ > 1. (9)
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2 Fixed Point Analysis

Mean Populations and Stability Criteria

Analysis Plan [assuming (α + 1)e−µ > 1]

1. Use the differential equations and birth pulse equations to
obtain the functions g and h for the map

ut+1 = ut g(ut , vt), vt+1 = vt h(ut , vt) (10)

◦ This form focuses on the growth factors ut+1/ut and vt+1/vt ,
which simplifies the derivation of the map and computation of
the fixed points.

2. Solve g(u∗, v∗) = 1, h(u∗, v∗) = 1, where u∗, v∗ > 0.

3. Find the Jacobian, its trace T , and its determinant D.

◦ Use extensive algebraic simplification!

4. Identify stability conditions from the Jury criteria,

D < 1, D + T + 1 > 0, D − T + 1 > 0. (11)
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2 Fixed Point Analysis

Mean Populations and Stability Criteria

Analysis Results

I There is a unique coexistence fixed point when α + 1 > eµ.
Key quantities are yearly averages (f̄ , x̄) rather than (u∗, v∗):

f̄ =
eµ1 − 1

α1
< 1, x̄ = 1 − f̄ < 1. (12)

I Key parameters are q, M, δ:

q =

∫ 1
0 (1 − e−µs)G ∗(s, µ, x̄ , ρ) ds∫ 1
0 (1 − e−µ)G ∗(s, µ, x̄ , ρ) ds

< 1, G ∗ = · · · > 0. (13)

M = (α + 1)e−µ − 1 > 0, δ = e−ρf̄ < 1, (14)

I Stability criteria require M small enough:

1

M
> 1 − q,

1

M
>

1 − δ

1 + δ

(
q − 1

2

)
, (15)
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3 Results

Bifurcation Plots

ρ = 20
fast resource growth

ρ = 10
moderate resource growth
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3 Results

Overcompensation (J2) Instability

Overcompensation (J2) Instability

I When µ is large, the system behaves like the discrete logistic
map. Greater instability leads to period doubling and chaos.
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3 Results

Consumer-Resource (J1) Instability

Consumer-Resource (J1) Instability

I When µ is small, the system again exhibits period doubling
and chaos, but there are some important differences.
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3 Results

Comparison of Instabilities

Distance to Chaos

I The top example in each sequence was just into the chaotic
regime. This happens much quicker for the low µ instability.
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3 Results

Comparison of Instabilities

Cycle Details

I Overcompensation 4-cycles (top) are actually a pair of
2-cycles (H1-H2 and L1-L2) inside a 2-cycle (H-L).

I Consumer-resource 4-cycles (bottom) are 4-year cycles, with
periods of near extinction of the resource.
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3 Results

Comparison of Instabilities

Cycle Details
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