# Introduction to Mathematical Models in Epidemiology

Glenn Ledder

Department of Mathematics University of Nebraska-Lincoln gledder@unl.edu

January 29, 2021

#### 1. Class Structure

#### 2. Processes

- 2.1 Transitions
- 2.2 Transmissions
- 2.3 Summary

#### 3. Model Types

- 3.1 Epidemic Models
- 3.2 Endemic Models

#### 4. Basic Reproductive Number

#### 5. Behavior of Epidemic Models

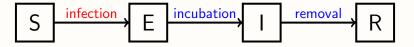
- 5.1 Not everyone gets the disease
- 5.2 The epidemic ends (in theory)
- 5.3 Final size relation

#### 1. Class structure

- ► Individuals in a population are divided into classes. These can vary from one model to another. Examples:
  - S: Susceptible can be infected
  - E: Exposed infected but not infectious
  - I: Infectious can transmit the disease to susceptibles
  - R: Removed no longer infectious
- Sometimes the names are misleading.
  - 'Exposed' should be 'Latent'
  - Removed includes people who are still sick and may include people who are deceased
- Models are designated by the class structure: SIR, SIS, SEIR, SEAIR. SEAIRHD etc

#### 2. Processes

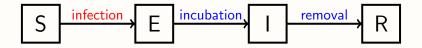
- Processes move individuals from one class to another.
  - Some models have processes that bring individuals into or out of the system.
- Example: Basic SEIR model



- Rate of change of S is infection
- Rate of change of *E* is **infection incubation**
- Rate of change of I is incubation removal
- Rate of change of R is removal

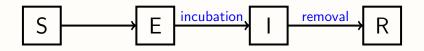
## 2. Processes – Two Types

▶ Processes are either transmissions or transitions.



- Transmissions require interaction with another class.
  - Susceptibles are infected by Infectives.
- Transitions happen without any interaction.
  - Incubation of Latent individuals and removal of Infectious individuals happen spontaneously.

#### 2.1 Processes – Transitions



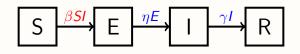
- ► Transition rates are (assumed to be) proportional to the **leaving** class
  - incubation rate = constant  $*E = \eta E$
  - removal rate = constant  $*I = \gamma I$
- ► Rate constants are reciprocals of average time in class.
  - Average removal time 10 days  $\rightarrow \gamma = 0.1$

#### 2.2 Processes – Transmissions



- ► Transmission rates are proportional to the leaving class size
  - infection rate = force of infection  $*S = \lambda S$
- ► The force of infection is proportional to the sum of the **transmitting** classes (just I for SEIR)
  - force of infection = constant  $*I = \beta I$
- ▶ The infection rate is  $\beta I * S = \beta SI$

## 2.3 Summary – SEIR epidemic model

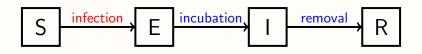


$$S' = -\beta SI$$
  
 $E' = \beta SI - \eta E$   
 $I' = \eta E - \gamma I$   
 $R' = \gamma I$ 

- ▶ Let N = S + E + I + R. Then N' = 0, so N is constant.
  - The R equation is not needed because R = N S E I.

## 3.1 Model Type - Epidemic

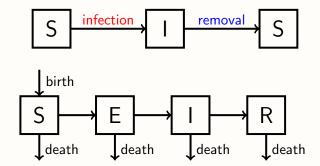
- Epidemic models have no means for replenishment of susceptibles.
  - These do not have births or natural deaths, so they are intended only for short time intervals (up to a few years).



► Including deceased individuals as 'Removed' makes the total population constant, which simplifies the model.

## 3.2 Model Type – Endemic

- Endemic models have some means for replenishment of susceptibles.
  - The focus of analysis is on determining long term behavior.



## 4. Basic reproductive number

- **Basic reproductive number**  $\mathcal{R}_0$ : the average number of secondary infections caused by one primary infective in a fully susceptible population.
  - $\mathcal{R}_0 > 1$  is needed to start an epidemic.
- ▶ The total number is the average rate times the average time.
- Calculation of average transmission rate:
  - Recall that the **transmission rate** is  $\beta SI$
  - Transmission rate **per infective**:  $\beta S$
  - Rate per infective in a fully-susceptible population:  $\beta N$

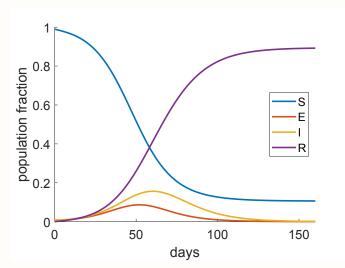
## 4. Basic reproductive number

- **Basic reproductive number**  $\mathcal{R}_0$ : transmission rate per infective in a fully susceptible population multiplied by average time in the Infectious class.
- $\triangleright$  Average transmission rate:  $\beta N$
- Calculation of average time:
  - Recall that the removal rate is γI.
  - The average time is  $1/\gamma$ .

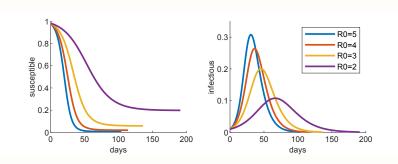
$$\mathcal{R}_0 = \beta N \cdot \frac{1}{\gamma} = \frac{\beta N}{\gamma}.$$

Other diseases (like COVID-19) can be more complicated.

## 5 Behavior of Epidemic Models - Typical history



# 5. Behavior of Epidemic Models – Importance of $\mathcal{R}_0$



- Conjectures based on simulations:
  - 1. Not everyone gets the disease.
    - Larger  $\mathcal{R}_0$  means fewer escape.
  - 2. The epidemic ends (in theory) with I = 0.
    - This is because we ignored births.

## 5.1 Epidemic Models – Not everyone gets the disease

$$\frac{dR}{dS} = \frac{R'}{S'} = \frac{\gamma I}{-\beta SI} = -\frac{\gamma}{\beta} \frac{1}{S}.$$

- 1. Integrate this equation using the fact that at time 0 we have S = S(0) and R = R(0).
- 2. Let s = S/N, r = R/N,  $s_0 = S(0)/N$ ,  $r_0 = R(0)/N$ . Rearrange the solution from Question 1 to get

$$\ln \frac{s_0}{s} = \mathcal{R}_0(r - r_0). \tag{1}$$

- 3. Solve for s and use the result to show that  $s > s_0 e^{-\mathcal{R}_0} > 0$ .
- ▶ The fraction of susceptibles is always decreasing, but never 0.

## 5.2 Epidemic Models – The epidemic ends with I=0

- 4. Rewrite the S' equation as  $I dt = -\beta^{-1} dS/S$  and integrate from time 0 to time  $\infty$ .
  - Just leave the integral on the left side because you don't have a formula for I
  - Do the integral on the right side. You may assume  $\lim_{t\to\infty} S = S_{\infty} > 0$ . (Why?)
- 5. You have just shown that  $\int_0^\infty I \, dt$  is a finite number. What can you conclude about  $\lim_{t\to\infty} I$ ?

## 5.3 Epidemic Models - Final size relation

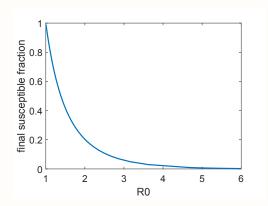
- 6. You now know that  $I \to 0$ . Explain why that means  $E \to 0$  also. Conclude that  $s_{\infty} + r_{\infty} = 1$ .
- 7. Use the result of Question 6 with Equation (1) to get the final size relation

$$\ln \frac{s_0}{s_\infty} = \mathcal{R}_0(1 - r_0 - s_\infty). \tag{2}$$

- This result can be used to estimate  $\mathcal{R}_0$  for an epidemic that is finished (assuming no interventions).
- 8. Explain why  $1 r_0 s_{\infty}$  is the fraction of people who have the disease at some point in the epidemic.

## 5.3 Epidemic Models – Final size relation

Assume no initial immunity.



 $ightharpoonup \mathcal{R}_0$  for COVID-19 is about 5.7.