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1. Class Structure

1. Class structure

I Individuals in a population are divided into classes. These can
vary from one model to another. Examples:

• S: Susceptible – can be infected

• E: Exposed – infected but not infectious

• I: Infectious – can transmit the disease to susceptibles

• R: Removed – no longer infectious

I Sometimes the names are misleading.

• ‘Exposed’ should be ‘Latent’

• Removed includes people who are still sick and may include
people who are deceased

I Models are designated by the class structure: SIR, SIS, SEIR,
SEAIR, SEAIRHD etc
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2. Processes

2. Processes

I Processes move individuals from one class to another.

• Some models have processes that bring individuals into or out
of the system.

I Example: Basic SEIR model

S E I R
infection incubation removal

• Rate of change of S is − infection

• Rate of change of E is infection − incubation

• Rate of change of I is incubation − removal

• Rate of change of R is removal
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2. Processes

2. Processes – Two Types

I Processes are either transmissions or transitions.

S E I R
infection incubation removal

• Transmissions require interaction with another class.

◦ Susceptibles are infected by Infectives.

• Transitions happen without any interaction.

◦ Incubation of Latent individuals and removal of Infectious
individuals happen spontaneously.
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2. Processes

2.1 Transitions

2.1 Processes – Transitions

S E I R
incubation removal

I Transition rates are (assumed to be) proportional to the
leaving class

• incubation rate = constant ∗ E = ηE
• removal rate = constant ∗ I = γI

I Rate constants are reciprocals of average time in class.
• Average removal time 10 days → γ = 0.1
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2. Processes

2.2 Transmissions

2.2 Processes – Transmissions

S E I R
infection

I Transmission rates are proportional to the leaving class size

• infection rate = force of infection ∗ S = λS

I The force of infection is proportional to the sum of the
transmitting classes (just I for SEIR)

• force of infection = constant ∗ I = βI

I The infection rate is βI ∗ S = βSI
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2. Processes

2.3 Summary

2.3 Summary – SEIR epidemic model

S E I R
βSI ηE γI

S ′ = −βSI

E ′ = βSI − ηE

I ′ = ηE − γI

R ′ = γI

I Let N = S + E + I + R. Then N ′ = 0, so N is constant.

• The R equation is not needed because R = N − S − E − I .
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3. Model Types

3.1 Epidemic Models

3.1 Model Type – Epidemic

I Epidemic models have no means for replenishment of
susceptibles.

• These do not have births or natural deaths, so they are
intended only for short time intervals (up to a few years).

S E I R
infection incubation removal

I Including deceased individuals as ‘Removed’ makes the total
population constant, which simplifies the model.
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3. Model Types

3.2 Endemic Models

3.2 Model Type – Endemic

I Endemic models have some means for replenishment of
susceptibles.

• The focus of analysis is on determining long term behavior.

S I S
infection removal

S E I R

birth

death death death death
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4. Basic Reproductive Number

4. Basic reproductive number

I Basic reproductive number R0:
the average number of secondary infections caused by one
primary infective in a fully susceptible population.

• R0 > 1 is needed to start an epidemic.

I The total number is the average rate times the average time.

I Calculation of average transmission rate:

• Recall that the transmission rate is βSI

• Transmission rate per infective: βS

• Rate per infective in a fully-susceptible population: βN



Mathematical Epidemiology

4. Basic Reproductive Number

4. Basic reproductive number

I Basic reproductive number R0:
transmission rate per infective in a fully susceptible population
multiplied by average time in the Infectious class.

I Average transmission rate: βN

I Calculation of average time:

• Recall that the removal rate is γI .

• The average time is 1/γ.

R0 = βN · 1

γ
=
βN

γ
.

I Other diseases (like COVID-19) can be more complicated.
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5. Behavior of Epidemic Models

5 Behavior of Epidemic Models – Typical history
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5. Behavior of Epidemic Models

5. Behavior of Epidemic Models – Importance of R0
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I Conjectures based on simulations:
1. Not everyone gets the disease.

◦ Larger R0 means fewer escape.

2. The epidemic ends (in theory) with I = 0.

◦ This is because we ignored births.
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5. Behavior of Epidemic Models

5.1 Not everyone gets the disease

5.1 Epidemic Models – Not everyone gets the disease

dR

dS
=

R ′

S ′
=

γI

−βSI
= −γ

β

1

S
.

1. Integrate this equation using the fact that at time 0 we have
S = S(0) and R = R(0).

2. Let s = S/N, r = R/N, s0 = S(0)/N, r0 = R(0)/N.
Rearrange the solution from Question 1 to get

ln
s0
s

= R0(r − r0). (1)

3. Solve for s and use the result to show that s ≥ s0e
−R0 > 0.

I The fraction of susceptibles is always decreasing, but never 0.
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5. Behavior of Epidemic Models

5.2 The epidemic ends (in theory)

5.2 Epidemic Models – The epidemic ends with I = 0

4. Rewrite the S ′ equation as I dt = −β−1dS/S and integrate
from time 0 to time ∞.

• Just leave the integral on the left side because you don’t have
a formula for I

• Do the integral on the right side. You may assume
limt→∞ S = S∞ > 0. (Why?)

5. You have just shown that
∫∞
0 I dt is a finite number. What

can you conclude about limt→∞ I?
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5. Behavior of Epidemic Models

5.3 Final size relation

5.3 Epidemic Models – Final size relation

6. You now know that I → 0. Explain why that means E → 0
also. Conclude that s∞ + r∞ = 1.

7. Use the result of Question 6 with Equation (1) to get the final
size relation

ln
s0
s∞

= R0(1− r0 − s∞). (2)

• This result can be used to estimate R0 for an epidemic that is
finished (assuming no interventions).

8. Explain why 1− r0 − s∞ is the fraction of people who have
the disease at some point in the epidemic.
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5. Behavior of Epidemic Models

5.3 Final size relation

5.3 Epidemic Models – Final size relation

I Assume no initial immunity.
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I R0 for COVID-19 is about 5.7.
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