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Soil Associations of Dryobalanops

White: sandy soil Dark green: clay soil

Circles and dots are individual trees

Small variations in soil type, water availability, and light levels give
local advantages to different species.
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Biological Background

764 different tree species in 130-acres (0.2 square miles)
at the Lambir Hills Forest Dynamics Plot in Borneo.

I 73% are aggregated on a single soil type (of 4).

Different species have different leaf characteristics:
I Thin and flimsy, with little protection against herbivores.
I Tough or suffused with noxious chemicals (caffeine, etc).

F D. aromatica contains camphor (an antimicrobial and anesthetic).

Research Goal:
Develop a mechanistic model to predict response of growth rates
and leaf characteristics to environmental conditions.
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Problem Overview

Environmental Conditions:
I Light level φ0

I Nitrogen availability n
I Herbivory pressure η

(Optimized) Leaf Characteristics:
I ‘Integrity’ to ’productivity’ ratio z (responds to φ0, n, η)
I Thickness (responds to φ0)
I Display (responds to φ0)

(Emergent) Leaf Characteristics:
I Longevity (age when maintenance equals production)

Ledder et al (UNL) Tree Growth JMM 2015 5 / 22



Principal Quantities

Independent Variables

t time
x age of leaf cohort
τ = t − x time of construction for leaf cohort

Dependent Variables

w(x , t) ‘productivity’ carbon mass of leaf cohort of age x
W (t) total ‘productivity’ carbon mass
B(t) = w(0, t) construction rate of ‘productivity‘ tissue
z(τ) ‘integrity’ per unit ‘productivity’

Functions

γ(z) base tissue loss rate
φ(x , t) light level for leaves of age x
F (x , t) net investment rate function
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Overview

1 Define the broad framework of the model.

2 Identify and analyze the simplest plausible version of the model.

3 Add realism/complexity and run simulations.
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‘Productivity’ Retention Over Time

Initial state is 1 unit of ‘productivity’.

Tissue loss is by natural decay with rate Γ(z) = ηγ(z).
I η is environmental hostility factor.

’Productivity’ carbon in initial cohort:

W0(t) = e−Γ(z0)t

‘Productivity’ carbon in cohort of age x :

w(x , t) = B(t − x)e−xΓ(z(t−x))

Total ‘productivity’ carbon:

W (t) = W0(t) +

∫ t

0
w(x , t) dx
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Net Investment Rate Function F (x , t)

Carbon production per unit ‘productivity’:

A(φ(x , t))

Rate of allocation to leaves from leaves of age x :

κA(φ(x , t))w(x , t)

Rate of photosynthetic respiration from leaves of age x :

ρA(φ(x , t))w(x , t)

Rate of maintenance respiration from leaves of age x :

µw(x , t)

Net rate of investment in leaves from leaves of age x :

F (x , t)w(x , t) = [(κ− ρ)A(φ(x , t))− µ]w(x , t)

Ledder et al (UNL) Tree Growth JMM 2015 9 / 22



Carbon Balance

Total rate of carbon availability for new leaves:

F (t, t)W0(t) +

∫ t

0
F (x , t)w(x , t) dx .

Total rate of carbon expenditure on new leaves:

C (t)B(t), where C = β(1 + z)

The carbon balance equation follows from equating the rate of
availability with the rate of expenditure.

C (t)B(t) = F (t, t)W0(t) +

∫ t

0
F (x , t)w(x , t) dx
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Summary of the Model

The ‘productivity’ construction rate B(t) is given by

C (t)B(t) = F (t, t)e−Γ(z0)t +

∫ t

0
B(t − x)F (x , t)e−xΓ(z(t−x)) dx

where
C (t) = β(1 + z(t)), Γ(z) = ηγ(z) = ?

F (x , t) = (κ− ρ)A(φ(x , t))− µ = ?

The total ‘productivity’ carbon is then

W (t) = e−Γ(z0)t +

∫ t

0
B(t − x)e−xΓ(z(t−x)) dx

The goal of the analysis is to find z to “maximize” W .
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Overview

1 Define the broad framework of the model.

2 Identify and analyze the simplest plausible version of the
model.

3 Add realism/complexity and run simulations.
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The Simplest Plausible Version

Suppose there is no self-shading. Then the light level φ is the same
for all leaves. This makes the net investment function F constant.

With constant investment rate, the optimal ‘integrity’ investment
ratio z and base tissue loss rate γ(z) should be constant.

With B0 = F/C , the model is

B(t) = B0e
−ηγt + B0

∫ t

0
B(t − x)e−ηγx dx

This equation can be solved with the Laplace transform:

B(t) = B0e
(B0−ηγ)t , W (t) = eλt , λ =

F

C
− ηγ.
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A Proposed Tissue Loss Model

Let X (z) = 1/γ(z); then X/η is the expected survival time for leaf
tissue.

We get maximum W by maximizing the growth rate

λ(z) =
F

β(1 + z)
− η

X (z)
> 0

If we think of ‘integrity’ as a coating on the leaves, additional survival
time should be proportional to the thickness of the coating:

X (z) = X0 (1 + Kz)

Note that X0/η is the expected survival time when there is no
investment in ‘integrity’.
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Optimal ‘Integrity’ for the Constant φ Model

Scaling time by X0/η simplifies the objective function to

r(z) =
Q

1 + z
− 1

1 + Kz

where

r =
X0λ

η
, Q =

FX0

βη

r is the scaled growth rate

Q is a lumped parameter representing environmental quality

K > 1 represents the enhanced survival resulting from unit ‘integrity’.
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Optimal Strategy for a Model Tree

integrity value (K)
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Optimal strategy, given value of ‘integrity’ K and environmental quality Q
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Optimal ‘Integrity’ for the Constant φ Model

r(z) =
Q

1 + z
− 1

1 + Kz

1 Q ≤ 1/K < 1

I Tree is not viable (maximum growth rate is negative)

2 Q ≥ K > 1

I Optimal ‘integrity’ is z = 0

3 1/K < Q < K

I Optimal ‘integrity’ is z =

√
K −

√
Q

K
√
Q −

√
K
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Optimal Performance of a Model Tree
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Optimal ‘integrity’ and growth rate for the simplest model, with K = 4
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Overview

1 Define the broad framework of the model.

2 Identify and analyze the simplest plausible version of the model.

3 Add realism/complexity and run simulations.
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Photosynthesis and Light Attenuation

We still need models for

I Photosynthesis A(φ) for a given light level

I Light level φ(x , t) for a given cohort

Simplified photosynthesis model:

A(φ) = min(Amφ,V )

Beer’s Law:
φ(x , t) = φ0e

−k`(x ,t)

I `(x , t) is the number of leaf layers younger than x
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Newer Leaf Layers

Let
I C (τ) be the area of each leaf cohort
I σ(τ) be the area per unit mass for each leaf cohort

Biomass of each leaf cohort:

[1 + z(t − x)] w(x , t)

Leaf layers for each cohort:

σ(t − x)
1 + z(t − x)

C (t − x)
w(x , t)

Total number of layers above a cohort:

`(x , t) =

∫ t

x
σ(t − ξ)

1 + z(t − ξ)

C (t − ξ)
w(ξ, t) dξ.
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Summary (given constant z , σ, C , and scaling)

Find B(t̄) from

β̄(1 + z)B(t̄) = F̄ (t̄, t̄)e−t̄/(1+Kz) +

∫ t̄

0
B(t̄ − x)F̄ (x , t̄)e−x/(1+Kz) dx

where
F̄ (x̄ , t̄) = min

(
e−k̄ ¯̀(x̄ ,t̄), V̄

)
− µ̄

and

¯̀(x̄ , t̄) = (1 + z)

∫ x̄

0
B(t̄ − ξ) exp

(
− ξ

1 + Kz

)
dξ

Solve numerically at each time step by the Nystrom method
(approximate integrals with quadrature formulas).
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