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Mathematical Modeling

General Principles of Modeling

I Modeling contrasted with mathematics

I What are mathematical models?

I Models as functions of parameters
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Mathematics vs Modeling
I Mathematics

• Assumptions define the setting.
• Conclusions follow from mathematical logic.
• Focus is on proof.

I Modeling
• Assumptions define a conceptual model of a real setting.
• Conclusions for the model follow from mathematical logic.
• Conclusions for the setting are only as good as the conceptual

model.
• Focus is on checking results against known outcomes.

real
world

conceptual
model

mathematical
model

approximation

validation

derivation

characterization
and simulation

parameterization



Mathematical Modeling

What is a Mathematical Model?

I A mathematical model is a self-contained collection of one
or more variables together with a set of rules (usually formulas
and equations) that prescribe the values of those variables.

• Models serve as an approximate quantitative description of
some actual or hypothetical real-world scenario.

• Models are created in the hope that the behavior they predict
will capture enough of the features of that scenario to be
useful.

• The value of a model depends on the setting to which it is
applied and the questions it is used to address.

I A mechanistic model is a mathematical model based on
assumptions about the scientific principles that underlie the
phenomena being modeled.
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Models as Functions of Parameters

How do we view the logistic growth model

dP

dt
= rP

(
1− P

K

)
, P(0) = P0 > 0, r ,K > 0?

I Narrow view:
Initial value problem for P(t), with parameters r , K , and P0.

I Broad view:
Function that maps parameters r , K , and P0 to outcomes.

IVP P(t)t outcomesr ,K ,P0
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Models as Functions of Parameters

IVP P(t)t outcomesr ,K ,P0

I Narrow view: Math problem with fixed parameters.

• The narrow view is used to determine the outcomes.

◦ Narrow view questions are trivial: “Given K = 10, R = 1, and
P0 = 1, when does the population reach P = 5?”

I Broad view: Math problem with outcomes as functions of
parameters.

• The important questions are in the broad view.

◦ Do solutions with any initial condition always approach K?
◦ At what point is the population growth the fastest?
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An Example – the SEIR Epidemic Model

1. Assumptions and mathematical derivation

1.1 Class structure
1.2 Processes
1.3 Differential equations
1.4 Basic reproductive number

2. Designing an investigation

2.1 Asking questions
2.2 Choosing study parameters and outcomes

3. Overview of Methods

4. Addressing questions and reporting results

4.1 Parameter studies
4.2 Using simulations
4.3 Simulations can suggest conjectures
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1.1. Class structure
I Individuals in a population are divided into classes. These vary

among different epidemiological models. For SEIR:

• S: Susceptible – can be infected

• E: Exposed – infected but not infectious

• I: Infectious – can transmit the disease to susceptibles

• R: Removed – no longer infectious

I Sometimes the names are misleading.

• ‘Exposed’ should be ‘Latent’ (already infected, not merely
exposed)

• Removed includes people who are still sick and may include
people who are deceased

I Models are designated by the class structure: SIR, SIS, SEIR,
SEAIR, SEAIRHD etc
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1.2 Processes

I Processes move individuals from one class to another.

• Example: Basic SEIR model

S E I R
infection incubation removal

• Rate of change of S is − infection

• Rate of change of E is infection − incubation

• Rate of change of I is incubation − removal

• Rate of change of R is removal
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1.2 Processes

I Processes are either transmissions or transitions.

S E I R
infection incubation removal

• Transmissions require interaction with another class.

◦ Susceptibles are infected by Infectives.

• Transitions happen without any interaction.

◦ Incubation of Latents and removal of Infectives happen
spontaneously (but perhaps in phases).
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1.2 Transitions

S E I R
incubation removal

I Transition rates are proportional to the leaving class
(assuming one-phase transitions)

• incubation rate = constant ∗ E = ηE
• removal rate = constant ∗ I = γI

I Rate constants are reciprocals of average time in class.
• Average removal time 10 days → γ = 0.1
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1.2 Transmissions

S E I R
infection

I Transmission rates are proportional to the leaving class size

• infection rate = force of infection ∗ S = λS

I The force of infection is (usually) proportional to the sum of
the transmitting classes (just I for SEIR)

• force of infection = constant ∗ I = βI

I The infection rate is βI ∗ S = βSI
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1.3 Differential equation model

S E I R
βSI ηE γI

S ′ = −βSI

E ′ = βSI − ηE

I ′ = ηE − γI

R ′ = γI

I Let N = S + E + I + R. Then N ′ = 0, so N is constant.
(Without loss of generality, we can take N = 1.)

I The model is an autonomous dynamical system
(rates of change depend only on the state of the system).
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1.4 Basic reproductive number

I Basic reproductive number R0:
the average number of secondary infections caused by one
primary infective in a fully susceptible population.

• R0 > 1 is needed to start an epidemic.

I The total number is the average rate times the average time.

I Calculation of average transmission rate:

• Recall that the transmission rate is βSI

• Transmission rate per infective: βS

• Rate per infective in a fully-susceptible population: βN
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1.4 Basic reproductive number

I Basic reproductive number R0:
average transmission rate per infective in a fully susceptible
population multiplied by average time in the Infectious class.

I Average transmission rate per infective in a fully susceptible
population: βN

I Average time in infectious class: 1/γ (reciprocal of γ)

I Average number is average rate times average time:

R0 = βN · 1

γ
=
βN

γ
.

I Other diseases (like COVID-19) can be more complicated.
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2.1 Asking questions

I Models must be designed to answer specific questions.

• If we want to know the impact of COVID-19 on health care
resources, we need to modify the SEIR model to track
hospitalizations and/or ICU patients.

• If we want to know the impact of mitigation strategies on
COVID-19, we need to build mitigation into the model.

◦ My COVID-19 model is SEAIHRD with λ impacted by testing
and a contact factor.

I Some common question types:

• Is a specific claim supported by modeling or not?

• What effect does parameter x have on outcome y?
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2.2 Choosing study parameters

I Model parameters are not always the best study parameters,
especially when they are hard to measure.

• Transition times are more fundamental than transmission rate
constants. (Take γ = 1/Ti )

• The transmission parameter β is dependent on population size,
while the basic reproductive number R0 is a fundamental
disease property. (Take β = γR0/N.)

I Some parameters are more fundamental than others.

• The effect of the disease duration Ti , given fixed R0, is simply
to change the time scale for the results.

• Changing a model to dimensionless form (see Ledder,
Mechanistic Modeling, Section 5) eliminates scale parameters.
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2.2 Choosing outcomes

I Maximum number of new infections?

I Maximum number of hospitalizations per million?
(compared to an average of 2800 hospital beds per million in
the US)

• Serves as a measure of the stress on the health care system

I Percent deaths? (0.1% in the US is 325,000 people)

• Serves as a measure of the human cost

I Final fraction of susceptibles?

• Serves as a measure of the risk of a new outbreak

I Times for any of these events?
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3. Overview of methods

I Solution – seldom useful

• Very few differential equation problems can be solved using
methods of calculus. Even when possible, the results are often
less useful than those obtained using other methods.

I Characterization – using hand computation to obtain
properties of a model

• We can often determine long-term behavior using mostly
algebra.

• Results are often general (parameters left unspecified).

I Simulation – using numerical computation to obtain results
for individual scenarios

• Results are never general (parameters must be specified).
• Can still be used to address general questions.
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4. Addressing questions and reporting results

I Answers to math questions are often numbers or formulas.
Modeling questions require verbal answers, supplemented
with visual aids.

• ‘The graph goes up and then comes down’ is merely a
description. An explanation connects to the real world scenario
and offers a reason for the observed results.

I Graphs must be informative and not misleading.

• No negative values for populations or parameters.
• Axes must be labeled.
• Sometimes multiple curves on the same axes are more

informative than multiple graphs.
• Measured data should be plotted as points; simulation results

should be plotted as dot-to-dot ‘curves’.
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4.1 Parameter studies
I Sensitivity analysis can determine how important a parameter

is, but it does not determine the parameter’s effect.

I Parameter studies determine the quantitative effect of a
parameter on one or more outcomes.

• SEIR example: Assume no initial immunity or mitigation. How
does the fraction of people who don’t get the disease depend
on the basic reproductive number? (Homework problems 2–3)
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4.2 Using simulations

Modeling with simulations requires two program components:

1. A function that
• Accepts input values for

◦ Disease parameters, like γ and β,
◦ Scenario parameters, like initial and terminal conditions,

and
• Returns the time history of the class counts.

2. A driver script that

• Organizes an experiment,
• Utilizes the function to obtain outcomes, and
• Displays the results.
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4.2 SIR paramstudy.R

This driver script plots various outcomes as a function of a
parameter. Script elements:

1. Define function sir sim(beta,gamma,I0,V,target).

2. Define default scenario values.

3. Prescribe range and count of study parameter values.

4. Set up data structures.

5. Run loop:

• Collect study parameter value.
• Compute derived parameter values.
• Use function sir sim to collect results.
• Add results to a data structure.

6. Create plots.
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4.3 Simulations can suggest conjectures
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We can prove these conjectures (Homework problem 3)

1. The fraction of susceptibles is continually decreasing, but is
bounded away from 0.

2. The epidemic ends with I = 0 and S = s∞ for some s∞ > 0.
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Homework

Problems 1–3 are essential. Problem 4 is ‘extra credit.’

1. Use characterization to find a fatal flaw in a commonly-used
model.

2. Use an R program to produce the parameter study plot on the
4.1 slide. You will just need to make a few changes to
SIR paramstudy.R.

3. Use mathematics to prove the conjectures on the 4.3 slide.

4. Work through a model research study that could have been
done by undergraduates (but without any prompting other
than a general question).


