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Abstract

The simplest age-structured population models update a population vector via mul-
tiplication by a matrix. These linear models offer an opportunity to introduce mathe-
matical modeling to students of limited mathematical sophistication and background.
We begin with a detailed discussion of mathematical modeling, particularly in a bi-
ological context. We then describe Bugbox-population, a virtual insect laboratory
that allows students to make observations and collect quantitative data easily, thereby
learning mathematical modeling in the context of its use in scientific research. Creating
a mathematical model for boxbugs involves the same intellectual work as creating a
mathematical model for real insects, but without the difficulties involved in collecting
real biological data. The analysis of the Bugbox-population data leads to the develop-
ment of the eigenvalue problem for population projection matrices.

INTRODUCTION

To work together, mathematicians and biologists do not need to be experts on each other’s
subject, but they do need to have a good understanding of how mathematics and science
interact. One interaction is in the use of mathematical techniques, in the form of statistics,
to analyze biological data. This is fine as far as it goes.

Another interaction between mathematics and biology is in the use of mathematical
models. Where statistics can only describe data, mathematical models can yield quantitative
predictions and qualitative scientific insight. Unfortunately, few mathematicians and even
fewer biologists have any training in mathematical modeling. Mathematics books generally
contain what are called “applications” of mathematics, perhaps including some applications
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in biology. “Applications,” as presented in most mathematics texts, are an inadequate
introduction to mathematical modeling because of several standard features:

1. The author has done the hard work of deciding what assumptions to use in the math-
ematical description.

2. Quantities that are dependent on circumstances, such as rates of radioactive decay, are
assigned numerical values rather than being given as symbols representing a range of
possible values.

3. There is no mention, much less discussion, of the need to test the predictions of the
mathematical work before accepting the results as valid.

4. The questions are about specific details that can be answered by routine computations
rather than general features requiring thoughtful analysis.

Because mathematical models are mathematical objects, I believe that it is primarily the
responsibility of mathematicians to teach mathematical modeling. In this paper, I present an
exposition of models and modeling along with a detailed example of how I teach mathematical
modeling in its broader context of theoretical science. This task is facilitated by a software
applet called Bugbox-population that stands in for a real scientific experiment.

MATHEMATICAL MODELS

Any discussion of mathematical modeling must begin with a definition of the term “mathe-
matical model.”

mathematical model: a self-contained set of formulas and/or equations based on an ap-
proximate quantitative description of real phenomena and created in the hope that the
behavior it predicts will resemble the real behavior on which it is based.

In this definition, I am thinking primarily of deterministic models; however, stochastic models
fit the same definition if by “solution” we mean the probabilistic properties of the model
rather than the results of a single instance.

As an example of a deterministic mathematical model, consider Newton’s model for
projectile motion, which can be found in any calculus-based general physics book and most
differential equations books. We may write the model as
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where y(t) is the height at time ¢ of a projectile above a gravitational body of radius R
and mass M, given that the height and velocity are initially yy and vy, with G representing
Newton’s universal gravitational constant. This model is self-contained because it has enough
information to prescribe a unique solution in terms of M, R, yo, and vy. It is preferable to
refrain from specifying values for these quantities until it becomes necessary to do so; even
if we have the earth in mind as the specific gravitational body, we may still want to apply



the model to Mars or the moon, which would require different values for M and R. The
model is approximate because Newton’s theory of gravity has been superseded by Einstein’s
theories of special and general relativity. It is also approximate in circumstances where other
forces, such as air resistance, are present. We might create this model in the hope that it
will be useful for replicating real data, a hope that will be realized if we restrict its use to
situations where the approximations inherent in it are realistic. This model does very well
at predicting the initial velocity needed for a rocket to escape the moon’s gravity; it does
very poorly at predicting the time it takes a feather to fall to the ground from an eagle’s
nest. It is not valid at all for vy < 0 if also yg = 0.

Mathematical models inhabit the ideal world of mathematics, not the messy world of
reality. This is a strength, in that claims made about them can sometimes be proven. It
is also a weakness, in that the results obtained from them may have questionable scientific
value. The best models are simple enough for mathematical analysis, complex enough to
capture the qualitative behavior of reality in a large range of cases, and accurate enough to
make good predictions in a broad setting.

Narrow and broad views

Consider a mathematical model for the amount y(¢) of a radioactive isotope, given by

d
7y = _kyv y(O) = Yo, k%yo > 07 (2)

dt
where 1, is the initial amount of the isotope and k is a constant that represents the relative
decay rate. In a typical question from a differential equations text, we might be given values
of k and yg and asked to determine the amount of the isotope at some future time. To answer
questions of this type, we solve the equations of the model to obtain the formula

y = yoe ™ (3)

and insert the appropriate numerical values. A similar question would be to give values for
yo and also y(t1) for some time ¢; > 0 and ask for the value of k. This question is less direct,
but it can still be answered using the solution formula. Both of these questions are examples
of what I call the “narrow” view of mathematical modeling. In this view, the quantities y
and t are variables and k and y, are constants.

independent . dependent
parameters variable(s),| equations | variable(s), | behavior,

narrow view

broad view

Figure 1: Narrow and broad views of mathematical models



Mathematical models can be seen in a broad view as well as the narrow view (see Figure
1). As an example, suppose we want to know how long it takes for a quantity of a radioactive
substance to be reduced to a fraction p of the original amount. The question generalizes the
concept of the half-life, for which p = % We need the solution formula for this question too,
but we use it to obtain an answer that is a formula rather than a number and applies to
the general case rather than a specific case. Let ¢, be the desired time. We set y = pyy and
t = t,, obtaining the result

Inp!
t, = Z . (4)

In this result, the quantities £ and p play the role of independent variable and ¢, serves as
dependent variable. The original model variables y and ¢ are absent from this broad view.
Equation 4 is not particularly profound, but the problem it solves is certainly deeper than
the routine questions of the narrow view. More sophisticated models have more profound
questions that can be asked in this broad view. For example, we can use the projectile
model (1) to determine how the velocity required to escape from a planet’s gravitational
field depends on the mass and radius of that planet.

The broad view of mathematical modeling requires an understanding of parameters,
which we are now ready to define.

parameter: a quantity in a mathematical model that is intermediate between a constant and
a variable: it takes on a single value in the narrow view, in which the model is seen
as prescribing the relationship between dependent and independent variables; it serves
as an independent variable in the broad view, in which one seeks to characterize the
model in terms of parameter values.

Mechanistic and empirical models

Prior to the advent of computers, data had to be plotted by hand. Graph paper was made
using linear scales and logarithmic scales, with the latter making it possible to graph the
logarithm of a variable by plotting the variable values directly rather than having to calculate
logarithms. In my science classes, we plotted data for variables x and y on regular, semi-
log (one linear axis and one logarithmic axis) and log-log paper, keeping whichever graph
appeared closest to a straight line. If this was the log-log graph, then we assumed logy and
log x were related by a linear function, say

logy = b+ plogx.
This led to the power function model
y = Az?, ()

where A = 10° and p are parameters.

Power functions remain popular as models. There are usually no scientific principles
pointing to a power function model. Most often, they are chosen simply because they fit
the data better than the other standard models. Models selected in this manner are called
empirical.



empirical model: a mathematical model based on reverse engineering of data.

The radioactive decay model (2) can be chosen on empirical grounds, but it can also be
derived from scientific principles. As a thought experiment, imagine that we have several
different boxes filled with different quantities of the same substance. We let some time elapse
and examine the boxes, whereupon we observe that the same fraction of objects seems to
have disappeared from each box. Assuming that the relative rate of decay of a quantity y(t)
is constant, we obtain the mathematical statement

1d

- =k, (6)

y dt
where k is some positive parameter. A simple rewrite yields Equation 2. Models obtained
in this manner are called mechanistic.

mechanistic model: a mathematical model derived from a set of assumptions based on
scientific principles.

Empirical models can be useful for obtaining quantitative predictions, but they can yield
no qualitative insight. Mechanistic models offer the potential for qualitative insight as well
as quantitative prediction because of their intimate connection to scientific theory. Models
for projectile motion are a good case in point. Galileo discovered that the height y(¢) of an
object falling from initial height 3, under the influence of gravity is

Y="%Yo — kt2> (7)
where k is a fixed constant (approximately 4.9 m/sec? in modern units). This is an empirical
model, as contrasted with the mechanistic model (1) of Newton. Using calculus!, we can de-
rive Galileo’s model from Newton’s and identify the k in Equation 7 as GM/(2R?). Galileo’s
model only works for falls from heights yy that are significantly less than R, a restriction
that does not affect Newton’s model.

Mechanistic models are more likely than empirical models to be useful beyond the narrow
setting for which they were created. There is still a danger that a mechanistic model will be
applied in a setting for which it is not appropriate. It is natural, for example, to apply the
radioactive decay model for other decay processes, such as the change in temperature of a
body that is hotter than its surroundings or the change in population size for a population of
animals with no food. These applications may work out well, but we should be cautious. Only
by comparing the predictions of a model with observation or experiment can we determine
whether the model is successful in the specific context.

In applying mathematical models in novel settings, it is helpful to try to isolate the
“approximate” from the “quantitative description” in the definition of a mathematical model.
We can do this by writing a verbal description, or conceptual model, that corresponds exactly
to the mathematical model. All of the approximation is then in the relationship between
the real physical setting and the conceptual model used to approximate it. When the model
behavior turns out to differ significantly from the real behavior on which it was supposedly
based, the conceptual model is defective. We can often obtain a useful mathematical model
by working out the defect in the equivalent conceptual model, a process that requires scientific
thinking rather than mathematical thinking.

1Simply apply the approximation R 4 y ~ R and integrate.



HOW MODELS ARE USED

In general, mathematical models can be used for quantitative and qualitative purposes. We
consider these uses in turn.

Models and simulation

Scientific experiments can be costly, slow, and difficult. Experiments in biology are partic-
ularly problematic. Mathematical models offer great promise as a way to do experiments
cheaply, quickly, and easily. An excellent example of this is the ATLSS model of the Ever-
glades [2, 5], created by The Institute for Environmental Modeling (TITEM) of the University
of Tennessee-Knoxville. Suppose we want to know what effect a new construction project
would have on the Florida panther population in the Everglades. We cannot run a real
experiment, but we can instead run the experiment with the ATLSS model. ATLSS is not
guaranteed to give results that are absolutely quantitatively correct; however, it can be used
to estimate the effects of a policy decision.

Simulation can be a valuable tool for engineering and policy making. However, there is a
potential difficulty: The model used in the simulation could be wrong in the given context.
A classic example in biology is the claim sometimes seen in mathematics books that when
humans disturb a predator-prey system by hunting predators, the predator population does
not decrease at all. This ridiculous result comes from analysis of the Lotka-Volterra predator-
prey model (see Equation 8 below). The Lotka-Volterra model was very successful in the
setting for which it was derived [4]. However, the model is not valid for all predator-prey
settings. We'll return to the Lotka-Volterra model in the next section.

Simulations are used to make quantitative predictions. The quantitative accuracy is
limited by uncertainty in the parameter values and the sensitivity of the model behavior to
the parameter values. This is not usually a problem in physics, where many parameters are
known to a high degree of precision. In biology, parameters can be very difficult to measure.
As a simple example, suppose we are trying to predict the effect of a release of smallpox
virus into a human population. The model must include parameters such as the fraction
of smallpox victims that die. The only information available about these parameters is in
historical records, which show a considerable variation. Death rates, for example, depend on
the particular strain of the virus and can vary significantly for different groups of people.

Models and science

Science is the systematic search for simple explanations of our complicated world. It is a
blend of the empirical, in the form of experiments and observations, and the rational, in
the form of theories and mathematical models. Figure 2 indicates the role of mathematical
modeling in science.

Science begins with coincidental or deliberate observations, but observations alone do not
constitute science. Science requires an attempt to explain the observations through some
conceptual framework, which is often in the form of a mathematical model. Those models
that explain the observations are tentatively considered to be valid. Predictions made by the
models are then tested with experiments. As long as the predictions of a model are verified
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Figure 2: A schematic diagram indicating the role of mathematical modeling in science

by experiment, the situation is stable. This may last for a long time, and in the naivety
of the 19th century it was expected to last forever. The great revolutions in physics in the
early 20th century changed the nature of science; it became clear that scientific theories
are “useful” rather than “true.” It now appears likely that all scientific theories have their
limitations, and when these are found we must search for a new conceptualization.

Some areas of theoretical biology have progressed to the stage of mechanistic models.
These models lack the predictive power of Newton’s model of motion under gravity, but they
are still useful.

MATHEMATICAL MODELING

Armed with an understanding of what mathematical models are and how they are used, we
turn now to the process of mathematical modeling. I take the rather snobbish point of view
that modeling with empirical models should be called “statistical modeling” and that the
term “mathematical modeling” should be restricted to work done with mechanistic models.
Thus restricted, mathematical modeling is a complete process consisting of conceptualization,
characterization, testing, parameterization (usually), and prediction, as depicted in Figure
3. The dashed arrows are included when the purpose of the model is quantitative prediction.
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Figure 3: A schematic diagram indicating the logical sequence of mathematical modeling

Conceptualization involves creating a caricature of reality that can be expressed in verbal
and mathematical form. By “caricature,” I am invoking the image of a political cartoon, in
which an oversimplified and exaggerated sketch is easily recognizable as some public figure.
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It is common to go directly from the physical setting to the model; however, it is important to
understand that every mechanistic model corresponds to some narrative caricature. Making
the narrative version explicit makes it easier to interpret the model and to improve it if it
is not successful. As an example, consider the standard SIR infectious disease model, which
can be found in many differential equations books (or see [3] for a more complete treatment).
The derivation assumes that contacts among people occur randomly, which corresponds to
a conceptual model of people as molecules in a gas, moving endlessly and haphazardly, each
indistinguishable from the others. This obviously flawed assumption does not necessarily
render the model useless, but it should at least make us stop to think about the importance
of social networks in any given setting. We should not use the SIR model to study an
outbreak of a rare disease, because the human interactions of the individual who introduces
the disease are clearly important in that setting.

I use the term “characterization,” rather than “analysis,” to describe the process of using
mathematics to determine the behavior of the model over a range of parameter values. For
most mathematicians, “analysis” carries a connotation of mathematical rigor, with emphasis
on proving theorems. From a modeling point of view, the likelihood of bad conceptualization
is much greater than the likelihood of bad characterization. One should focus on improving
the conceptualization rather than verifying the characterization with proofs.

Parameterization is the process of choosing parameter values to fit data. In some theo-
retical investigations, there is no data with which to determine parameter values. In these
cases, the question is whether the model can produce the observed behavior for some range
of parameter values, and this is decided in the characterization.

Prediction can involve qualitative and/or quantitative features. Qualitative features are
such general observations as “The predators die if their natural death rate is too high,” with
“too high” defined by some inequality comparing the natural death rate to some combination
of the other parameters.

The modeling procedure includes a feedback loop starting with the testing step. The test
question is

Is the model behavior qualitatively compatible with known observations?

If so, then use of the model is tentatively warranted. If not, then the conceptualization needs
to be redone. This reality check is a crucial component of good mathematical modeling. We
have to remember that models are caricatures created in the hope that their behavior resem-
bles the real behavior on which they are based. If the model behavior does not adequately
mirror the real behavior, then the model is wrong.

As an example, suppose we want to make a model to study the effect on a predator-prey
community if we increase the predator death rate through human activity, such as hunting
of predators. We might explore this issue by starting with the well-known Lotka-Volterra
model, which we can write as

d
— =rz — bay, d—?z = cbxy — my, (8)

where z and y are the prey and predator biomasses, respectively?, and b, ¢, m, and r are

2We can use the variables to represent the number of individuals, but the models are generally more
correct if we think of the variables as biomass.



positive parameters. The narrative version of the model is not generally stated, but we
can discover it by examining the model in detail. First, note that there are three processes
that contribute to the population change. The term rxz represents the growth of the prey,
while the term my represents the mortality of predators, with the parameter m taking larger
values if people kill predators. The term bxy represents the rate at which prey biomass is
lost through the interaction between species, and the extra factor ¢ < 1 in the predator
equation indicates the efficiency with which the predator converts prey biomass into its own
biomass. We need not concern ourselves with the narrative implied by the algebraic forms
bry and my, although these are also subject to criticism. Our primary interest is in what
the model says about the prey population growth, which is that there are no environmental
restrictions on the relative growth rate r. The predation process is the only restriction on
the growth of prey biomass because it is the only negative term in the prey equation.

We now turn to the characterization of the model. There are equilibria at (0,0) and
(m/cb,r/b). This alone is sufficient to point out a critical flaw in the model. Any reasonable
predator-prey model should allow for the possibility of long-term prey survival coupled with
predator extinction. Since predator absence reduces the model to one dimension, we require
a model that has a stable equilibrium solution with ¥y = 0 and z > 0, and there is no
equilibrium solution with these properties. The model as it currently stands fails to pass
this reality check; hence, we return to the conceptualization step.

The key to finding the flaw in the Lotka-Volterra model is to examine the reduced model

corresponding to no predators. It is
dx

dt
The Lotka-Volterra model predicts unbounded prey growth in the absence of predators.
Thus, if we try to eliminate predation, the prey population goes through the roof. That in
turn makes the predator population viable because an extremely large value of x counters
the large value of m. We can fix the error by stipulating a conceptual model that places a
restriction on the prey population when predators are absent. One such model is given by

re. (9)

dx x dy
Pk (1 — K) — by, pri cbxy — my. (10)

In the absence of predators, the prey equation becomes

dtzm:(l—f(). (11)

The parameter K represents the largest prey biomass that the environment can support,
because the prey population decreases if © > K.
We can now characterize this new model. We find equilibria

b0, wor (5l a]) o

with the last of these relevant only if m < c¢bK. Further analysis shows that this mutual
survival equilibrium is asymptotically stable whenever it exists, and the predator extinction
equilibrium (K, 0) is asymptotically stable whenever m > ¢bK. In biological terms, the
model makes the following prediction:



e Hunting of predators causes the predator population to decrease and the prey popula-
tion to increase, up to the point where m = cbK; if m is made larger than that, the
prey population will reach the environmental capacity while the predator population
disappears.

This prediction is qualitatively compatible with observation. We can test it further by
measuring the populations and parameter values for some specific predator-prey community.

BUGBOX-POPULATION: A TOOL FOR TEACHING
MATHEMATICAL MODELING

It is not terribly difficult to teach students about mathematical modeling; that is exactly
what I've been doing up to this point. Teaching students to do mathematical modeling
is another matter entirely. Mathematical modeling is a skill that needs to be learned by
experience. You can teach a person to play the piano, but you have to have a piano for
them to use while they are learning. Similarly, you can teach mathematical modeling, but
you have to have a way to provide students with the experience of modeling. This works
best if the modeling is done in the larger context of science. Modeling is more meaningful
to students when they create models based on their own observations and then discover the
flaws in their models by doing their own verification. Since modeling is initially difficult, it
helps if the setting to be modeled can be made progressively more challenging, starting at
a very simple level. Finally, it helps if the mathematics is simple so that the students can
focus on the modeling process without getting too stuck on the characterization step. This
difficult set of requirements is met by a software tool called Bugbox-population. I wrote this
tool using Python [10], a public domain programming language, with the auxiliary packages
Pygame [9] and Pgu [8]; it can now be freely downloaded from my web page as a windows
executable [6]. A similar tool, Bugbox-predator [7], is a virtual laboratory experiment to
provide motivation for the derivation of the Holling type II functional response.

A real species in a virtual world

Bugbox-population was originally created for use in a course called Research Skills for The-
oretical Ecology, which is a component of RUTE?, an interdisciplinary research program at
the University of Nebraska-Lincoln. Students in the course have limited college experience
or are new high school graduates. The course assumes no mathematics background beyond
precalculus and no specific biology background. The students have been successful in high
school or college, come with recommendations from teachers, and are highly motivated. The
course focuses on the general subject of biological pest control. We study the population dy-
namics of aphids and also predator-prey interactions between ladybird beetles and aphids.
The lecture and laboratory run concurrently. This poses a challenge, since we want the
mathematics to be driven by the laboratory work. The solution to this difficulty is to use
virtual laboratory work to motivate the mathematics.

3Research for Undergraduates in Theoretical Ecology
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Aphids have four juvenile stages and an adult stage, all of which look the same except
for minor size differences. During the summer, they live in colonies of females and give birth
to live young. It takes eight to ten days for aphids to progress from newborn to adult. This
makes for population growth that is quite rapid by biological standards, but it still takes
four weeks to collect enough data for mathematical modeling. Once an aphid settles on a
leaf or stem, it is likely to spend its entire life without any further movement; however, it is
still difficult to count aphids because of their small size and high density and their tendency
to cluster on the curved stem of a plant.

Bugbox-population displays a virtual world inhabited by a single species of insects called
boxbugs. Like aphids, boxbugs are all female and give birth to live young. Their environment
is two-dimensional, and they do not move for any reason. A day in bugbox time can take as
much or as little clock time as the observer wants. Like ladybird beetles, boxbugs progress
from larva to pupa to adult, with each stage distinctive in appearance. Boxbugs come in four
varieties, with each successive variety having a slightly more complicated life history than
the previous one. This combination of characteristics makes boxbugs the perfect species for
population dynamics studies.

Modeling boxbug populations

Students are given a limited number of facts about boxbug biology:
e Boxbugs progress from larva to pupa to adult.
e Boxbugs do not move.

e Larva are produced by adult boxbugs and inhabit a location adjacent to that which
is/was inhabited by the mother.

Beyond these elementary facts, students must use a model to describe their observations.
Bugbox-population makes this convenient. When Bugbox-population is loaded, the student
chooses one of the four species by marking a radio button. Another button begins the
simulation by showing the initial state of the bugbox. Thereafter, the student clicks a button
to advance the bugbox one time unit as many times as is desired. The Bugbox-population
display (Figure 4) shows two consecutive states of the bugbox: the current state is on the
right and the previous state is on the left. At each update, the software copies the state of
the bugbox from the right picture to the left, calculates the new state, and displays the new
state on the right. The student must study the changes to determine the life history details
for the given species.

Figure 4 shows the first update in an experiment using species four. Because of the three
basic principles of boxbug biology, we can track the development of individuals from the
time O picture on the left to the time 1 picture on the right. Of the four larvae, two became
pupae, one remained a larva, and one died. Both pupae became adults. One of the adults
survived, while the other two died. The three adults had a total of nine offspring. This
particular trial was chosen for Figure 4 because it includes all possible transitions.

11



Figure 4: The Bugbox-population display

Species one has a much simpler life history. In each time step, all larvae become pupae,
all pupae become adults, and all adults produce new larvae and die. We can therefore write
down equations to exactly determine the number of pupae and adults at the next time step,
given the current populations:

Pt+l = Lt7 At+1 = Pta (13)

where L;, P;, and A; are the larvae, pupae, and adult populations at time ¢. In this highly
simplified case, these equations are not “models” because they are exactly correct. The only
aspect of species one that is not automatic is that the number of offspring is not the same for
each adult. This is not an easy point for students to grasp. They need to advance through
enough time steps to realize that they can foretell the number of pupae and adults at each
time step from the numbers of larvae and pupae at the previous time step; however, they can
not accurately predict the population several steps into the future because the unpredictable
results of reproduction carry forward in time. We can’t exactly calculate the number of
pupae at time 2 if we can’t first calculate the number of larvae at time 1 from the known
populations at time 0.

Unlike the development from larva to pupa and pupa to adult, the pattern of offspring
production is stochastic, so there is no deterministic formula that can calculate the number
of larvae at time ¢t 4+ 1 from the number of adults at time ¢. Nevertheless, we can attempt
to construct a deterministic model, just as we can construct a deterministic model for the
stochastic process of radioactive decay.

So far, boxbug population dynamics for species 1 has been described exactly. At this
point, we need to model the mechanism of offspring production. In the absence of actual
knowledge about boxbug fertility, a reasonable first guess is that there is some average
number of offspring per adult. With this conceptual model, we have the mathematical
statement

Lt+1 - fAt7 (14)

where f is a parameter that represents the average number of offspring per adult per time
step. This model cannot be strictly true, but it might still yield good predictions in some
circumstances.

Equations 13 and 14 are the result of the conceptualization step for species 1. At this
point, we could recast the model in matrix form and do an eigenvalue analysis. My students
do not have the background for this yet, so we postpone the characterization step of Figure
3. Instead, I have the students parameterize the model by collecting enough data to estimate

12



the fecundity f. Then I have the students write a Matlab simulation* using the species 1
model with their value of f. They can use this simulation to predict boxbug populations
into the future. They can then run several experiments to test their predictions. I generally
ask them to run their simulation for just 8 steps because I don’t want to go so far that
environmental limits significantly affect the population size.

Before trying to teach more modeling skills, I prefer to give the students more practice
with conceptualization of linear models. I have them work their way up from species 1
through the intermediate species to species 4. Each successive species adds another level of
complexity to the model. The model for species 4,

Ly = sLi+ fA;, (15)
P = pLy, (16)
At+1 = Pt + ClAt, (17)

is as complex as the model they will eventually use for aphid population dynamics, except
that it has only three stages rather than five or six®. From this point, we can work on
learning how to characterize a matrix model. If desired, we can also work on improving the

conceptualization with a nonlinear model. We discuss these issues separately.

Characterization of the linear boxbug model

Most of my students have done matrix multiplication in a high school algebra course, but
this is the extent of their knowledge of linear algebra. This does not prevent us from a full
characterization of the model of Equations 15-17, but it does constrain the methods we can
employ. I use what I like to call “directed discovery,” in which I ask the students to use
a Matlab simulation to study their model in just the right way so that they discover the
dominant eigenvalue and its eigenvector. Specifically, I have them plot

1. the relative population increases X;/X;_1, for each of the three variables L, P, and A,
and

2. the ratios L;/A; and P, /A,

for species 4. A typical plot is illustrated in Figure 5. Figure 5a shows that the ratios X;/X;
all approach the same numerical value, which I define to be the “stable growth rate” A. Figure
5b shows the ratios L;/A; and P;/A;, each of which also approach specific numerical values,
which I denote u and v respectively. Similar graphs can be plotted with different initial
conditions, leading to the conclusion that the behavior of the solution, regardless of initial

41 almost never have even one student with computer programming experience. It takes one hour of class
time for us to write this very simple Matlab program, one line at a time with frequent stops for explanation
and testing. I don’t expect the students to be able to write their own programs, but they do need to
understand the program well enough to make the modifications needed for their aphid model.

5Returning to Figure 4, note the necessity of examining the mechanisms rather than just counting the
numbers. Some larvae in the current population are new, but one of them is a“holdover” from the previous
population. Similarly, some of the adults in the current population were pupae in the previous population,
but one was already an adult. Based on the minimal information we have, we could estimate f = 3.00,
s =0.25, p =0.50, and a = 0.33. These estimates will change if we collect more data.
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conditions, approaches a steady state in which the population increases by a factor of A each
time step and is distributed among the stages in the ratio u : v : 1.
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Figure 5: (a) The growth rates X;/X; ; for the larvae, pupae, and adults, boxbug species 4;
(b) The ratios X/A for the larvae and pupae, boxbug species 4

Our task now is to find and solve a mathematical problem for the unknowns A, u, and
v. One way to do this is to consider what happens if we choose the initial populations to be
Ly = u, Py = v, and Ay = 1. With this judicious choice, we have the steady-state solution
right from the beginning. Thus, we know that each population grows by a factor A:

Ll = )\LO = )\u, P1 = )\po = )\U, Al = )\AO =\ (18)
We can also calculate the populations at time 1 by applying the model (15-17) with ¢ = 0:
L1:SLO+fA0:SU+f, Plsz():pu, A1:P0+CLAO:/U+CL. (19)

Combining equations (18) and (19) yields a system of three equations with unknowns u, v,
and A\:
su+ f = u, pu = Av, v4a =\, (20)

or
(s—=MNu+f=0, pu— v =0, v+ (a— X)) =0. (21)

These are, of course, the scalar equivalents of the equation (M—AI)x = 0, where x = [u v 1]
and M is the matrix consisting of the coefficients of equations 15-17.

Students with limited modeling experience have a difficult time keeping in mind that
some of the symbols are unknowns and others represent fixed values. It may help to work
the problem first with numerical values for the parameters. The equations are linear in v and
v, so the simplest plan is to solve for these quantities in terms of A, thereby obtaining the
characteristic equation. We have v = A — a from the third equation and then pu = A(A — a)
from the second, whence the first equation becomes

pf = A =s)pu=AA—=a)(A—s), (22)
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which is one form of the characteristic equation for the matrix M. The function on the
right side of this equation is monotone increasing for A > K = max(s, a), which proves that
there is a unique solution \; > K, and this is the value that corresponds to the asymptote
in Figure 5a. Note that our form of the characteristic equation is more useful® than the
standard form because it allows us to prove that there is a unique solution greater than K.
Once A is known, we obtain solutions for v and v, and these correspond to the asymptotes
in Figure 5b. In summary, we have determined the stable growth rate and population ratios,
which are the dominant eigenvalue and eigenvector respectively, but without the machinery
of linear algebra. At this point, I show the students how the same problem is solved using
the notation and machinery of linear algebra.

The world of Bugbox-population

Mathematicians reading this discussion may be interested in knowing the actual rules that
govern the Bugbox-population world. There actually are parameters p, s, and a that repre-
sent the probability of a larva becoming a pupa, a larva surviving without becoming a pupa,
and an adult surviving, respectively. The rule governing births is more complicated. The
simulation identifies potential birth locations, which are empty spaces adjacent to spaces
occupied by an adult in the previous step. Each space is filled with a larva with some prob-
ability b or else left empty. The birth rate is thus density-dependent, and the population
self-limiting, because the number of potential birth spaces decreases as the population grows.

Building a nonlinear model

Depending on the level of sophistication of the students and the level of mathematical model-
ing one wants to teach, it is possible to continue working with boxbug models in an attempt
to make scientific progress. (We don’t do this in my course, partly because the students
do not have enough background in analysis and partly because the environmental capacity
for real aphid populations is so high that it does not affect population size until the plants
have accumulated considerable damage.) The first step is to discover the serious flaw in the
boxbug model: the lack of density dependence. If the students run their Matlab simulation
for 20 time steps instead of 8, the population will continue to grow exponentially. Of course
the real population must level off. The model is qualitatively incorrect, so it now fails the
test in Figure 2. At this point, the students will have discovered the need for an improved
conceptualization.

As previously noted, it is not possible to make a model that exactly corresponds to
the scientific principles of the Bugbox-population world. (How much harder it is for the
real world, in which we do not have a human creator who knows exactly the governing
principles!) However, students can build density-dependence into their model, at the cost
of losing linearity, by replacing the constant f with a function of the total population N =
L + P + A. Models such as this have been studied in considerable detail. There is a nice
discussion in the book by Linda Allen [1], based on a more thorough analysis by Silva

6This is one of many examples in which doing algebra carefully by hand yields results superior to the
unsimplified results obtained with computer algebra systems.
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and Hallam [11]. One reasonable idea is to assume a carrying capacity K, changing the L
equation to

Lt+Pt+At)At, (23)

Lt+1:8Lt+f<1— K
where f is now the maximum average number of offspring per adult per time step. The
resulting nonlinear model can be characterized by (1) finding the equilibrium states and
(2) linearizing the model about each equilibrium state to determine stability. The students
could estimate K experimentally, use a Matlab simulation to predict the time-dependent
populations, and run further experiments to test these predictions. The ultimate result
would be a mathematical model that, while not exactly capturing the “true” principles
governing Bugbox-population, would describe the population dynamics of boxbugs with
useful accuracy.

Conclusions

Even in a highly-simplified human-created virtual world, mathematical models are mathe-
matical objects that are more or less successful at predicting actual scientific results. The
connection between models and reality in the real world is more tenuous. This does not mean
that models have no value, but it does determine how we must think about mathematical
models. The most important task of mathematical modeling is the reality check. Without
at least a qualitative confirmation of accuracy, mathematical models have no scientific value.
The teaching of mathematical modeling must include a serious discussion of the place of
models in science and their connections to the real world. In particular:

We should always be skeptical about theoretical results that conflict with
observation. We may have discovered a new scientific result, but it is far more
likely that we are using an inappropriate model.
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