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Local cohomology

[ C R~ Hi(R)

Local cohomology modules capture many properties of R and I,
e.g.,

e the depth of I

e the dimension of R

e the Cohen-Macaulay and Gorenstein properties

However, they are often very large (not finitely generated) and
can be difficult to describe.
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T11 vt Tis
o X =|: : is an 7 X s matrix of indeterminants,

Lyl -+ Tpg
r<s

e C[X] is the polynomial ring in the entries of X,

e A=(Ay,...,A,) the ideal generated by the mazimal
minors of X

UNIVERSITY OF MINNESOTA



Describe HZA (C[X]).



Local cohomology of H) (C[X]).

UNIVERSITY OF MINNESOTA



Local cohomology of H) (C[X]).

UNIVERSITY OF MINNESOTA



Local cohomology of H) (C[X]).

A=(A,...,A,) CCLX].

H (C[X])

UNIVERSITY OF MINNESOTA



Local cohomology of H) (C[X]).

A=(A,...,A,) CCLX].

H (C[X]) may be computed as the 7!
cohomology of the complex

UNIVERSITY OF MINNESOTA



Local cohomology of H) (C[X]).

A=(A,...,A,) CCLX].

H (C[X]) may be computed as the 7!
cohomology of the complex

0 — C[X]

UNIVERSITY OF MINNESOTA



Local cohomology of H) (C[X]).

A=(A,...,A,) CCLX].

H (C[X]) may be computed as the 7!
cohomology of the complex

0— CX]|— @(C[X]Aj

UNIVERSITY OF MINNESOTA



Local cohomology of H) (C[X]).

A=(A,...,A,) CCLX].

H (C[X]) may be computed as the 7!
cohomology of the complex

0 - C[X] = @ ClX]a, = D CIX]a,a,

j<k

UNIVERSITY OF MINNESOTA



Local cohomology of H) (C[X]).

A=(A,...,A,) CCLX].

H (C[X]) may be computed as the 7!
cohomology of the complex

0— C[X %@C A, %@(C laa, = oo = C[X]aya, = 0.
i<k
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Previously known.

min{i | HY (C[X]) # 0} =s—r+1
e In positive characteristic, this is the only nonzero LC
module.

[Peskine-Szpiro, Hochster-Eagon]

max{i | HY (C[X]) £ 0} =r(s — 1) +1:= N

[Hochster, Huneke, Lyubeznik]

e Note that N = dimC[Ay,..., A,].
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Walther’s example.

o1 =2,5=3

X x x
o X — 11 12 L13
To1 T2 X923

e N=r(s—r)+1=3

HY (CIX]) = Egx)(C),

the injective hull of C as a C[X]-module.
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Supp Hy (C[X]) = {m},

U (Lyubeznik’s D-modules)

HY (C[X]) = E@[X}((C)@O‘ for some o € N.

Goal: Show o = 1.
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Let G = SL,(C).

G acts on:
e C[X]: Given AcG, A= A1 X
o [Weyl] = C[X]% =C[A,...,A,)]

e A=(Ay,...,A,)
e The complex:

0 — C[X] —» P ClX]a, = PCIX]aa, = .- = C[X]a,.a, =0
J i<k

e Each Hi (C[X])
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Each HY (C[X]) is a rational R|G]-module:

e For any g € G,r € C[X], and u € HY (C[X]),
g(ru) = (gr)(gu).

e Directed union of V s.t.
o dimcV < o0
e G xV — V is regular map

Critical: G is linearly reductive.
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General Idea: Reduce from the study of
HY (C[X]) to that of HY (C[Ay,...,A,]).

HY (C[X)? = HY (C[X]%)
HX (C[AL,...,A,))
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U
Soc HY (C[X]) := Anngycrx)) (m) simple
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Lemma. As rational R[G]-modules,

HY (C[X]) & Egx)(C) ®c Soc HY (C[X]) .

Using invariant theory as well as the representation theory of
G = SL,(C) we are able to conclude that

HY (C[X]) 2 ey (C).

UNIVERSITY OF MINNESOTA



Main Theorem on Minors.

UNIVERSITY OF MINNESOTA



Main Theorem on Minors.

(a) H\> " (C[X]) 2 Egp(0).

UNIVERSITY OF MINNESOTA



Main Theorem on Minors.

(a) HY™""(C[X]) & B (C).
(b) HJ (C[X]) #0

UNIVERSITY OF MINNESOTA



Main Theorem on Minors.

(a) HY™""(CIX]) & Eepx)(C).
(b) H} (C[X]) #0 <= i =i, for some
0<t<r,

UNIVERSITY OF MINNESOTA



Main Theorem on Minors.

(a) HY™""(CIX]) & Eepx)(C).
(b) H} (C[X]) #0 <= i =i, for some
0<t<r,

UNIVERSITY OF MINNESOTA



Main Theorem on Minors.

() HY™ " (CIX)) = Eey (©).
(b) HX (C[X]) # 0 <= i =1, for some
0 <t <r, where

iv=(r—1t)(s—r)+ 1.

UNIVERSITY OF MINNESOTA



Main Theorem on Minors.

() HY™ " (CIX)) = Eey (©).
(b) HX (C[X]) # 0 <= i =1, for some
0 <t <r, where

iv=(r—1t)(s—r)+ 1.

Furthermore,

UNIVERSITY OF MINNESOTA



Main Theorem on Minors.

() HY™ " (CIX)) = Eey (©).
(b) HX (C[X]) # 0 <= i =1, for some
0 <t <r, where

iv=(r—1t)(s—r)+ 1.

Furthermore,

UNIVERSITY OF MINNESOTA



Main Theorem on Minors.

() HY™ " (CIX)) = Eey (©).
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Main Theorem on Minors.

() HY™ " (CIX)) = Eey (©).
(b) HX (C[X]) # 0 <= i =1, for some
0 <t <r, where
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Furthermore,
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Main Theorem. Let
e Let R be a polynomial ring / k, char(k) =0,
e ( linearly reductive group / k acting “nicely” on R,
e [ =mpcR, and N = dim R®.

Then HN(R) # 0 and Hi(R) = 0 for i > d.

(a) If i < N, then m ¢ Assp H:(R).

If Supp HY (R) = {m}, then

(b) V :=Soc Hi(R) is a simple G-module, and

(c) As rational R[G]-modules, HN (R) = Eg(k) @y V.
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Example of further application.
o char(k) = 0.
e X an r X t matrix, Y a t X s matrix.
e R=E[X,Y].

o For A e SLi(k),
e X X A
e Y ALY

e RY = Kk[X -Y], so I is generated by the
entries of X - Y.
e We may study Hi(R).
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