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xr1 · · · xrs
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Goal.

Describe Hi
∆ (C[X ]).



Local cohomology of H i
∆ (C[X]).

∆ = (∆1, . . . ,∆n) ⊆ C[X].

H i
∆ (C[X]) may be computed as the ith

cohomology of the complex
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⊕
j

C[X]∆j →
⊕
j<k

C[X]∆j∆k
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Previously known.

min{i | HN
∆ (C[X]) 6= 0} = s− r + 1

• In positive characteristic, this is the only nonzero LC
module.

[Peskine-Szpiro, Hochster-Eagon]

max{i | HN
∆ (C[X]) 6= 0} = r(s− r) + 1 := N

[Hochster, Huneke, Lyubeznik]

• Note that N = dimC[∆1, . . . ,∆n].
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Walther’s example.

• r = 2, s = 3

• X =

[
x11 x12 x13

x21 x22 x23

]
• N = r(s− r) + 1 = 3

H3
∆ (C[X ]) ∼= EC[X](C),

the injective hull of C as a C[X]-module.
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Ingredients of proof that HN
∆ (C[X]) ∼= EC[X](C).

Let G = SLr(C).

G acts on:

• C[X]: Given A ∈ G, A 7→ A−1 ·X
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• ∆ = (∆1, . . . ,∆n)
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⊕
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⊕
j<k

C[X]∆j∆k
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• Each H i
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Let

• Let R be a polynomial ring / k, char(k) = 0,

• G linearly reductive group / k acting “nicely” on R,

• I = mRGR, and N = dimRG.

Then HN
I (R) 6= 0 and H i

I(R) = 0 for i > d.

(a) If i < N , then m /∈ AssR H i
I(R).

If SuppHN
I (R) = {m}, then

(b) V := SocH i
I(R) is a simple G-module, and

(c) As rational R[G]-modules, HN
I (R) ∼= ER(k)⊗k V.
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Example of further application.

• char(k) = 0.

• X an r × t matrix, Y a t× s matrix.

• R = k[X, Y ].
• For A ∈ SLt(k),

• X 7→ X ·A
• Y 7→ A−1 · Y

• RG = k[X · Y ], so I is generated by the
entries of X · Y .

• We may study H i
I(R).
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