

Dimensions of derived categories and singularity categories

Ryo Takahashi

Shinshu University/University of Nebraska-Lincoln

October 16, 2011

Joint work with Takuma Aihara

Definition

Definition

Let \mathcal{T} be a triangulated category

Definition

Let \mathcal{T} be a triangulated category

(e.g. $D^b(R)$, $D_{sg}(R) = D^b(R)/\text{perf}(R)$, $\underline{\text{CM}}(R)$, ...).

Definition

Let \mathcal{T} be a triangulated category

(e.g. $D^b(R)$, $D_{sg}(R) = D^b(R)/\text{perf}(R)$, $\underline{\text{CM}}(R)$, \dots).

Let $\mathcal{X}, \mathcal{Y} \subseteq \mathcal{T}$ and $n \geq 1$.

Definition

Let \mathcal{T} be a triangulated category

(e.g. $D^b(R)$, $D_{sg}(R) = D^b(R)/\text{perf}(R)$, $\underline{\text{CM}}(R)$, ...).

Let $\mathcal{X}, \mathcal{Y} \subseteq \mathcal{T}$ and $n \geq 1$.

- ① $\mathcal{X} * \mathcal{Y}$ consists of $\mathbf{C} \in \mathcal{T}$ admitting exact triangles
 $\mathbf{M} \rightarrow \mathbf{C} \rightarrow \mathbf{N} \rightarrow$ with $\mathbf{M} \in \mathcal{X}$ and $\mathbf{N} \in \mathcal{Y}$.

Definition

Let \mathcal{T} be a triangulated category

(e.g. $D^b(R)$, $D_{sg}(R) = D^b(R)/\text{perf}(R)$, $\underline{CM}(R)$, ...).

Let $\mathcal{X}, \mathcal{Y} \subseteq \mathcal{T}$ and $n \geq 1$.

- ① $\mathcal{X} * \mathcal{Y}$ consists of $C \in \mathcal{T}$ admitting exact triangles
 $M \rightarrow C \rightarrow N \rightarrow$ with $M \in \mathcal{X}$ and $N \in \mathcal{Y}$.
- ② $\langle \mathcal{X} \rangle$ is the smallest full subcategory of \mathcal{T} containing \mathcal{X} and closed under finite direct sums, direct summands and shifts.

Definition

Let \mathcal{T} be a triangulated category

(e.g. $D^b(R)$, $D_{sg}(R) = D^b(R)/\text{perf}(R)$, $\underline{\text{CM}}(R)$, ...).

Let $\mathcal{X}, \mathcal{Y} \subseteq \mathcal{T}$ and $n \geq 1$.

- ① $\mathcal{X} * \mathcal{Y}$ consists of $\mathbf{C} \in \mathcal{T}$ admitting exact triangles $\mathbf{M} \rightarrow \mathbf{C} \rightarrow \mathbf{N} \rightarrow$ with $\mathbf{M} \in \mathcal{X}$ and $\mathbf{N} \in \mathcal{Y}$.
- ② $\langle \mathcal{X} \rangle$ is the smallest full subcategory of \mathcal{T} containing \mathcal{X} and closed under finite direct sums, direct summands and shifts.

$$\langle \mathcal{X} \rangle_n = \overbrace{\langle \mathcal{X} \rangle * \cdots * \langle \mathcal{X} \rangle}^n,$$

Definition

Let \mathcal{T} be a triangulated category

(e.g. $D^b(R)$, $D_{sg}(R) = D^b(R)/\text{perf}(R)$, $\underline{CM}(R)$, ...).

Let $\mathcal{X}, \mathcal{Y} \subseteq \mathcal{T}$ and $n \geq 1$.

- ① $\mathcal{X} * \mathcal{Y}$ consists of $\mathbf{C} \in \mathcal{T}$ admitting exact triangles $\mathbf{M} \rightarrow \mathbf{C} \rightarrow \mathbf{N} \rightarrow$ with $\mathbf{M} \in \mathcal{X}$ and $\mathbf{N} \in \mathcal{Y}$.
- ② $\langle \mathcal{X} \rangle$ is the smallest full subcategory of \mathcal{T} containing \mathcal{X} and closed under finite direct sums, direct summands and shifts.

$$\langle \mathcal{X} \rangle_n = \overbrace{\langle \mathcal{X} \rangle * \cdots * \langle \mathcal{X} \rangle}^n, \langle \mathbf{G} \rangle_n := \langle \{ \mathbf{G} \} \rangle_n \text{ for } \mathbf{G} \in \mathcal{T}.$$

Definition

Let \mathcal{T} be a triangulated category

(e.g. $D^b(R)$, $D_{sg}(R) = D^b(R)/\text{perf}(R)$, $\underline{\text{CM}}(R)$, ...).

Let $\mathcal{X}, \mathcal{Y} \subseteq \mathcal{T}$ and $n \geq 1$.

- ① $\mathcal{X} * \mathcal{Y}$ consists of $\mathbf{C} \in \mathcal{T}$ admitting exact triangles $\mathbf{M} \rightarrow \mathbf{C} \rightarrow \mathbf{N} \rightarrow$ with $\mathbf{M} \in \mathcal{X}$ and $\mathbf{N} \in \mathcal{Y}$.
- ② $\langle \mathcal{X} \rangle$ is the smallest full subcategory of \mathcal{T} containing \mathcal{X} and closed under finite direct sums, direct summands and shifts.

$$\langle \mathcal{X} \rangle_n = \overbrace{\langle \mathcal{X} \rangle * \cdots * \langle \mathcal{X} \rangle}^n, \langle \mathbf{G} \rangle_n := \langle \{ \mathbf{G} \} \rangle_n \text{ for } \mathbf{G} \in \mathcal{T}.$$

- ③ The **dimension** $\dim \mathcal{T}$ of \mathcal{T} is the infimum of $r \geq 0$ such that $\mathcal{T} = \langle \mathbf{G} \rangle_{r+1}$ for some $\mathbf{G} \in \mathcal{T}$.

Let R be a commutative Noetherian ring.

Let R be a commutative Noetherian ring.

Fact

Let R be a commutative Noetherian ring.

Fact

- ① $\dim D^b(R) \geq \dim D_{sg}(R)$.

Let R be a commutative Noetherian ring.

Fact

① $\dim D^b(R) \geq \dim D_{sg}(R)$.

② [Rouquier 2008]

If R is a reduced affine algebra, then $\dim D^b(R) \geq \dim R$.

Let R be a commutative Noetherian ring.

Fact

① $\dim D^b(R) \geq \dim D_{sg}(R)$.

② [Rouquier 2008]

If R is a reduced affine algebra, then $\dim D^b(R) \geq \dim R$.

③ [Avramov-Iyengar]

If R is local, then $\dim D_{sg}(R) \geq \operatorname{cfrank} R - 1$.

Question

Question

When $\dim D^b(R) < \infty$?

Question

When $\dim D^b(R) < \infty$?

Fact

Question

When $\dim D^b(R) < \infty$?

Fact

- ① If R is Artinian, then $D^b(R) = \langle R / \text{rad } R \rangle_{\ell\ell(R)}$, and $\dim D^b(R) \leq \ell\ell(R) - 1 < \infty$.

Question

When $\dim D^b(R) < \infty$?

Fact

- ① If R is Artinian, then $D^b(R) = \langle R / \text{rad } R \rangle_{\ell\ell(R)}$, and $\dim D^b(R) \leq \ell\ell(R) - 1 < \infty$.
- ② [D. Christensen 1998, Krause-Kussin 2006]
If R is regular with $\dim R < \infty$, then $D^b(R) = \langle R \rangle_{\dim R + 1}$, and $\dim D^b(R) \leq \dim R < \infty$.

Question

When $\dim D^b(R) < \infty$?

Fact

- ① If R is Artinian, then $D^b(R) = \langle R / \text{rad } R \rangle_{\ell\ell(R)}$, and $\dim D^b(R) \leq \ell\ell(R) - 1 < \infty$.
- ② [D. Christensen 1998, Krause-Kussin 2006]
If R is regular with $\dim R < \infty$, then $D^b(R) = \langle R \rangle_{\dim R + 1}$, and $\dim D^b(R) \leq \dim R < \infty$.
- ③ [Rouquier 2008, Keller-Van den Bergh]
If R is essentially of finite type, then $\dim D^b(R) < \infty$.

Question

When $\dim D^b(R) < \infty$?

Fact

- ① If R is Artinian, then $D^b(R) = \langle R / \text{rad } R \rangle_{\ell\ell(R)}$, and $\dim D^b(R) \leq \ell\ell(R) - 1 < \infty$.
- ② [D. Christensen 1998, Krause-Kussin 2006]
If R is regular with $\dim R < \infty$, then $D^b(R) = \langle R \rangle_{\dim R+1}$, and $\dim D^b(R) \leq \dim R < \infty$.
- ③ [Rouquier 2008, Keller-Van den Bergh]
If R is essentially of finite type, then $\dim D^b(R) < \infty$.

Question

Question

When $\dim D^b(R) < \infty$?

Fact

- ① If R is Artinian, then $D^b(R) = \langle R / \text{rad } R \rangle_{\ell\ell(R)}$, and $\dim D^b(R) \leq \ell\ell(R) - 1 < \infty$.
- ② [D. Christensen 1998, Krause-Kussin 2006]
If R is regular with $\dim R < \infty$, then $D^b(R) = \langle R \rangle_{\dim R + 1}$, and $\dim D^b(R) \leq \dim R < \infty$.
- ③ [Rouquier 2008, Keller-Van den Bergh]
If R is essentially of finite type, then $\dim D^b(R) < \infty$.

Question

If R is complete local, then $\dim D^b(R) < \infty$?

Example

Example

Let $R = k[[t^4, t^5, t^6]] \subseteq k[[t]] = S$.

Example

Let $R = k[[t^4, t^5, t^6]] \subseteq k[[t]] = S$. We have $C_R = t^8 S \subseteq R$.

Example

Let $R = k[[t^4, t^5, t^6]] \subseteq k[[t]] = S$. We have $C_R = t^8 S \subseteq R$.

There is an exact sequence $0 \rightarrow R \xrightarrow{f} S \rightarrow S/R \rightarrow 0$,

Example

Let $R = k[[t^4, t^5, t^6]] \subseteq k[[t]] = S$. We have $C_R = t^8 S \subseteq R$.
There is an exact sequence $0 \rightarrow R \xrightarrow{f} S \rightarrow S/R \rightarrow 0$, where S/R is an R/C_R -module.

Example

Let $R = k[[t^4, t^5, t^6]] \subseteq k[[t]] = S$. We have $C_R = t^8 S \subseteq R$.
There is an exact sequence $0 \rightarrow R \xrightarrow{f} S \rightarrow S/R \rightarrow 0$, where S/R is an R/C_R -module. Fix $X \in D^b(R)$.

Example

Let $R = k[[t^4, t^5, t^6]] \subseteq k[[t]] = S$. We have $C_R = t^8 S \subseteq R$. There is an exact sequence $0 \rightarrow R \xrightarrow{f} S \rightarrow S/R \rightarrow 0$, where S/R is an R/C_R -module. Fix $X \in D^b(R)$. There is an exact sequence of R -complexes

$$0 \rightarrow M \rightarrow X \xrightarrow{X \otimes_R f} X \otimes_R S \rightarrow N \rightarrow 0,$$

Example

Let $R = k[[t^4, t^5, t^6]] \subseteq k[[t]] = S$. We have $C_R = t^8 S \subseteq R$. There is an exact sequence $0 \rightarrow R \xrightarrow{f} S \rightarrow S/R \rightarrow 0$, where S/R is an R/C_R -module. Fix $X \in D^b(R)$. There is an exact sequence of R -complexes

$$0 \rightarrow M \rightarrow X \xrightarrow{X \otimes_R f} X \otimes_R S \rightarrow N \rightarrow 0,$$

which gives exact triangles

$$M \rightarrow X \rightarrow L \rightarrow \quad \text{and} \quad L \rightarrow X \otimes_R S \rightarrow N \rightarrow .$$

Example

Let $R = k[[t^4, t^5, t^6]] \subseteq k[[t]] = S$. We have $C_R = t^8 S \subseteq R$.

There is an exact sequence $0 \rightarrow R \xrightarrow{f} S \rightarrow S/R \rightarrow 0$, where S/R is an R/C_R -module. Fix $X \in D^b(R)$. There is an exact sequence of R -complexes

$$0 \rightarrow M \rightarrow X \xrightarrow{X \otimes_R f} X \otimes_R S \rightarrow N \rightarrow 0,$$

which gives exact triangles

$$M \rightarrow X \rightarrow L \rightarrow \quad \text{and} \quad L \rightarrow X \otimes_R S \rightarrow N \rightarrow .$$

We have $X \otimes_R S \in D^b(S) = \langle S \rangle_2$

Example

Let $R = k[[t^4, t^5, t^6]] \subseteq k[[t]] = S$. We have $C_R = t^8 S \subseteq R$. There is an exact sequence $0 \rightarrow R \xrightarrow{f} S \rightarrow S/R \rightarrow 0$, where S/R is an R/C_R -module. Fix $X \in D^b(R)$. There is an exact sequence of R -complexes

$$0 \rightarrow M \rightarrow X \xrightarrow{X \otimes_R f} X \otimes_R S \rightarrow N \rightarrow 0,$$

which gives exact triangles

$$M \rightarrow X \rightarrow L \rightarrow \quad \text{and} \quad L \rightarrow X \otimes_R S \rightarrow N \rightarrow .$$

We have $X \otimes_R S \in D^b(S) = \langle S \rangle_2$ and $M, N \in D^b(R/C_R) = \langle k \rangle_2$,

Example

Let $R = k[[t^4, t^5, t^6]] \subseteq k[[t]] = S$. We have $C_R = t^8 S \subseteq R$.

There is an exact sequence $0 \rightarrow R \xrightarrow{f} S \rightarrow S/R \rightarrow 0$, where S/R is an R/C_R -module. Fix $X \in D^b(R)$. There is an exact sequence of R -complexes

$$0 \rightarrow M \rightarrow X \xrightarrow{X \otimes_R f} X \otimes_R S \rightarrow N \rightarrow 0,$$

which gives exact triangles

$$M \rightarrow X \rightarrow L \rightarrow \quad \text{and} \quad L \rightarrow X \otimes_R S \rightarrow N \rightarrow .$$

We have $X \otimes_R S \in D^b(S) = \langle S \rangle_2$ and $M, N \in D^b(R/C_R) = \langle k \rangle_2$, since $R/C_R \cong k[[x, y, z]]/(x, y, z)^2$ and $\ell\ell(R) = 2$.

Example

Let $R = k[[t^4, t^5, t^6]] \subseteq k[[t]] = S$. We have $C_R = t^8 S \subseteq R$.

There is an exact sequence $0 \rightarrow R \xrightarrow{f} S \rightarrow S/R \rightarrow 0$, where S/R is an R/C_R -module. Fix $X \in D^b(R)$. There is an exact sequence of R -complexes

$$0 \rightarrow M \rightarrow X \xrightarrow{X \otimes_R f} X \otimes_R S \rightarrow N \rightarrow 0,$$

which gives exact triangles

$$M \rightarrow X \rightarrow L \rightarrow \quad \text{and} \quad L \rightarrow X \otimes_R S \rightarrow N \rightarrow .$$

We have $X \otimes_R S \in D^b(S) = \langle S \rangle_2$ and $M, N \in D^b(R/C_R) = \langle k \rangle_2$, since $R/C_R \cong k[[x, y, z]]/(x, y, z)^2$ and $\ell\ell(R) = 2$. Hence $L \in \langle S \oplus k \rangle_4$,

Example

Let $R = k[[t^4, t^5, t^6]] \subseteq k[[t]] = S$. We have $C_R = t^8 S \subseteq R$.

There is an exact sequence $0 \rightarrow R \xrightarrow{f} S \rightarrow S/R \rightarrow 0$, where S/R is an R/C_R -module. Fix $X \in D^b(R)$. There is an exact sequence of R -complexes

$$0 \rightarrow M \rightarrow X \xrightarrow{X \otimes_R f} X \otimes_R S \rightarrow N \rightarrow 0,$$

which gives exact triangles

$$M \rightarrow X \rightarrow L \rightarrow \quad \text{and} \quad L \rightarrow X \otimes_R S \rightarrow N \rightarrow .$$

We have $X \otimes_R S \in D^b(S) = \langle S \rangle_2$ and $M, N \in D^b(R/C_R) = \langle k \rangle_2$, since $R/C_R \cong k[[x, y, z]]/(x, y, z)^2$ and $\ell\ell(R) = 2$. Hence $L \in \langle S \oplus k \rangle_4$, and $X \in \langle S \oplus k \rangle_6$.

Example

Let $R = k[[t^4, t^5, t^6]] \subseteq k[[t]] = S$. We have $C_R = t^8 S \subseteq R$.

There is an exact sequence $0 \rightarrow R \xrightarrow{f} S \rightarrow S/R \rightarrow 0$, where S/R is an R/C_R -module. Fix $X \in D^b(R)$. There is an exact sequence of R -complexes

$$0 \rightarrow M \rightarrow X \xrightarrow{X \otimes_R f} X \otimes_R S \rightarrow N \rightarrow 0,$$

which gives exact triangles

$$M \rightarrow X \rightarrow L \rightarrow \quad \text{and} \quad L \rightarrow X \otimes_R S \rightarrow N \rightarrow .$$

We have $X \otimes_R S \in D^b(S) = \langle S \rangle_2$ and $M, N \in D^b(R/C_R) = \langle k \rangle_2$, since $R/C_R \cong k[[x, y, z]]/(x, y, z)^2$ and $\ell\ell(R) = 2$. Hence $L \in \langle S \oplus k \rangle_4$, and $X \in \langle S \oplus k \rangle_6$. This shows $D^b(R) = \langle S \oplus k \rangle_6$,

Example

Let $R = k[[t^4, t^5, t^6]] \subseteq k[[t]] = S$. We have $C_R = t^8 S \subseteq R$.

There is an exact sequence $0 \rightarrow R \xrightarrow{f} S \rightarrow S/R \rightarrow 0$, where S/R is an R/C_R -module. Fix $X \in D^b(R)$. There is an exact sequence of R -complexes

$$0 \rightarrow M \rightarrow X \xrightarrow{X \otimes_R f} X \otimes_R S \rightarrow N \rightarrow 0,$$

which gives exact triangles

$$M \rightarrow X \rightarrow L \rightarrow \quad \text{and} \quad L \rightarrow X \otimes_R S \rightarrow N \rightarrow .$$

We have $X \otimes_R S \in D^b(S) = \langle S \rangle_2$ and $M, N \in D^b(R/C_R) = \langle k \rangle_2$, since $R/C_R \cong k[[x, y, z]]/(x, y, z)^2$ and $\ell\ell(R) = 2$. Hence $L \in \langle S \oplus k \rangle_4$, and $X \in \langle S \oplus k \rangle_6$. This shows $D^b(R) = \langle S \oplus k \rangle_6$, and $\dim D^b(R) \leq 5 < \infty$.

Theorem (Aihara-T)

Theorem (Aihara-T)

Let \mathbf{R} be a complete equicharacteristic local ring with perfect residue field. Then $\dim \mathbf{D}^b(\mathbf{R}) < \infty$.