

Some relations between countable Cohen-Macaulay representation type and super-stretched

Branden Stone University of Kansas

October 14, 2011

Definition

A local Cohen-Macaulay ring has finite (resp. countably) Cohen-Macaulay type provided there are, up to isomorphism, only finitely (resp. countably) many indecomposable maximal Cohen-Macaulay modules.

Definition

A local Cohen-Macaulay ring has finite (resp. countably) Cohen-Macaulay type provided there are, up to isomorphism, only finitely (resp. countably) many indecomposable maximal Cohen-Macaulay modules.

Examples of finite type:

Definition

A local Cohen-Macaulay ring has finite (resp. countably) Cohen-Macaulay type provided there are, up to isomorphism, only finitely (resp. countably) many indecomposable maximal Cohen-Macaulay modules.

Examples of finite type:

► Regular local rings

Definition

A local Cohen-Macaulay ring has finite (resp. countably) Cohen-Macaulay type provided there are, up to isomorphism, only finitely (resp. countably) many indecomposable maximal Cohen-Macaulay modules.

Examples of finite type:

- Regular local rings
- (Herzog 1978)0-dimensional hypersurface rings;

ADE Singularities (Knörrer 1987, Buchweitz-Greuel-Schreyer 1987)

If $k = \mathbb{C}$, then the complete ADE plane curve singularities over \mathbb{C} are

$$k[x, y, z_1, \ldots, z_r]/(f),$$

where f is one of the following polynomials:

$$(A_n): x^{n+1} + y^2 + z_1^2 + \dots + z_r^2, \ n \geqslant 1;$$

$$(D_n): x^{n-1} + xy^2 + z_1^2 + \dots + z_r^2, \ n \geqslant 4;$$

$$(E_6): x^4 + y^3 + z_1^2 + \dots + z_r^2;$$

$$(E_7): x^3y + y^3 + z_1^2 + \dots + z_r^2;$$

$$(E_8): x^5 + y^3 + z_1^2 + \dots + z_r^2.$$

Countable Cohen-Macaulay Type

Example (Buchweitz-Greuel-Schreyer 1987)

A complete hypersurface singularity over an algebraically closed uncountable field k has (infinite) countable Cohen-Macaulay type iff it is isomorphic to one of the following:

$$A_{\infty}: k[x, y, z_2, \dots, z_r]/(y^2 + z_2^2 + \dots + z_r^2);$$

$$D_{\infty}: k[\![x,y,z_2,\ldots,z_r]\!]/(xy^2+z_2^2+\cdots+z_r^2).$$

Motivating Question

Question (Huneke-Leuschke)

Let R be a complete local Cohen-Macaulay ring of countable Cohen-Macaulay representation type, and assume that R has an isolated singularity. Is R then necessarily of finite Cohen-Macaulay representation type?

Motivating Question

Question (Huneke-Leuschke)

Let R be a complete local Cohen-Macaulay ring of countable Cohen-Macaulay representation type, and assume that R has an isolated singularity. Is R then necessarily of finite Cohen-Macaulay representation type?

(Knörrer 1987, Buchweitz-Greuel-Schreyer 1987)
 True for hypersurfaces;

Motivating Question

Question (Huneke-Leuschke)

Let R be a complete local Cohen-Macaulay ring of countable Cohen-Macaulay representation type, and assume that R has an isolated singularity. Is R then necessarily of finite Cohen-Macaulay representation type?

- ► (Knörrer 1987, Buchweitz-Greuel-Schreyer 1987) True for hypersurfaces;
- (Karr-Wiegand 2010)
 True for one dimensional case;

Stretched

In 1988, D. Eisenbud and J. Herzog completely classified the graded Cohen-Macaulay rings of finite type. To do this they showed that such rings are stretched in the sense of J. Sally (1979).

Definition

A standard graded Cohen-Macaulay ring R of dimension d is said to be stretched if there exists a regular sequence x_1, \ldots, x_d of degree 1 elements such that

$$\dim_k \left(\frac{R}{(x_1,\ldots,x_d)}\right)_i \leqslant 1$$

for all $i \ge 2$.

Stretched

In 1988, D. Eisenbud and J. Herzog completely classified the graded Cohen-Macaulay rings of finite type. To do this they showed that such rings are stretched in the sense of J. Sally (1979).

Definition

A standard graded Cohen-Macaulay ring R of dimension d is said to be stretched if there exists a regular sequence x_1, \ldots, x_d of degree 1 elements such that

$$\dim_k \left(\frac{R}{(x_1,\ldots,x_d)}\right)_i \leqslant 1$$

for all $i \ge 2$.

 $(1,n,1,1,\ldots,1)$

Definition

A standard graded ring R of dimension d is said to be super-stretched if for all system of parameters x_1, \ldots, x_d , we have that

$$\dim_k \left(\frac{R}{(x_1,\ldots,x_d)}\right)_i \leqslant 1$$

for all $i \ge \sum \deg(x_i) - d + 2$.

Definition

A standard graded ring R of dimension d is said to be super-stretched if for all system of parameters x_1, \ldots, x_d , we have that

$$\dim_k \left(\frac{R}{(x_1,\ldots,x_d)}\right)_i \leqslant 1$$

for all
$$i \geqslant \sum \deg(x_i) - d + 2$$
.

Example: $k[x, y]/x^4$ is stretched but not super-stretched.

Definition

A standard graded ring R of dimension d is said to be super-stretched if for all system of parameters x_1, \ldots, x_d , we have that

$$\dim_k \left(\frac{R}{(x_1,\ldots,x_d)}\right)_i \leqslant 1$$

for all
$$i \ge \sum \deg(x_i) - d + 2$$
.

Example: $k[x, y]/x^4$ is stretched but not super-stretched.

Modulo y gives (1, 1, 1, 1)

Definition

A standard graded ring R of dimension d is said to be super-stretched if for all system of parameters x_1, \ldots, x_d , we have that

$$\dim_k \left(\frac{R}{(x_1,\ldots,x_d)}\right)_i \leqslant 1$$

for all
$$i \geqslant \sum \deg(x_i) - d + 2$$
.

Example: $k[x, y]/x^4$ is stretched but not super-stretched.

Modulo y gives (1, 1, 1, 1)

Module y^2 gives (1, 2, 2, 2, 1)

More Examples of super-stretched

- ▶ The complete ADE plane curve singularities over ℂ;
- Any ring of finite type;
- A_{∞} : $k[x, y, z_2, \dots, z_r]/(y^2 + z_2^2 + \dots + z_r^2);$
- ► D_{∞} : $k[x, y, z_2, ..., z_r]/(xy^2 + z_2^2 + \cdots + z_r^2);$
- ▶ $k[x, y, a, b, z]/(xa, xb, ya, yb, xz y^n, az b^m), n, m \ge 0$ (Burban-Drozd 2010)

Main Theorem

Theorem (Stone 2011)

A graded, noetherian, Cohen-Macaulay ring of countable Cohen-Macaulay type and uncountable residue field is super-stretched.

Main Theorem

Theorem (Stone 2011)

A graded, noetherian, Cohen-Macaulay ring of countable Cohen-Macaulay type and uncountable residue field is super-stretched.

The main tool in the proof is my ability to recover an ideal from its d^{th} syzygy. That is, given a free resolution of an \mathfrak{m} -primary ideal J, I am able to regain the ideal from the d^{th} syzygy of the resolution.

Conjecture

Conjecture (Burban ??)

A Gorenstein ring of countable Cohen-Macaulay representation type is an hypersurface.

Conjecture

Conjecture (Burban ??)

A Gorenstein ring of countable Cohen-Macaulay representation type is an hypersurface.

Proposition (Stone 2011)

Let R be a graded complete intersection with uncountable residue field and of countable Cohen-Macaulay representation type. Then R is a hypersurface with multiplicity at most three.

Conjecture

Conjecture (Burban ??)

A Gorenstein ring of countable Cohen-Macaulay representation type is an hypersurface.

Proposition (Stone 2011)

Let R be a graded complete intersection with uncountable residue field and of countable Cohen-Macaulay representation type. Then R is a hypersurface with multiplicity at most three.

Theorem (Stone 2011)

Let R be a graded Gorenstein ring of dimension one and uncountable residue field. If R is of countable Cohen-Macaulay representation type, then R is a hypersurface.

Thank You

