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Assumption

In this talk (R,m, k) is assumed to be a local commutative
noetherian ring with unity.

Definition
The finitely generated R-module C is semidualizing if

1 The homothety map χR
C : R → HomR(C,C) given by

χR
C(r)(c) = rc is an isomorphism, and

2 ExtiR(C,C) = 0 for all i > 0.

1 in Vasconcelos’ analysis of divisors associated to modules
2 in studies of local ring homomorphisms by Avramov and

Foxby
3 in Wakamatsu’s work on tilting theory
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Conjecture (W. V. Vasconcelos, 1974)
The set of isomorphism classes of semidualizing modules over
a Cohen-Macaulay local ring is finite.
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Theorem (L. W. Christensen and S. Sather-Wagstaff, 2008)

If R is Cohen-Macaulay and equicharacteristic, then the set of
isomorphism classes of semidualizing modules is finite.

Outline of the proof:
1 Reduce to the case where k is algebraically closed and R

is a finite dimensional k -algebra
2 Parametrize the set of R-modules M such that

dimk (M) = r by an algebraic scheme
3 GLn(R) acts on this scheme so that orbits are exactly the

isomorphism classes
4 Ext vanishing implies that every semidualizing R-module

has an open orbit
5 There can only be finitely many open orbits, so there are

only finitely many isomorphism classes of semidualizing
R-modules
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DG algebras and DG modules
Semiprojective DG A-Modules and DG Ext

Definition
A commutative differential graded algebra over R (DG
R-algebra for short) is an R-complex A with Ai = 0 for i < 0
equipped with a chain map µA : A⊗R A→ A denoted
µA(a⊗ b) = ab (which is called the product) that is

1 associative: for all a,b, c ∈ A we have (ab)c = a(bc);
2 unital: there is an element 1 ∈ A0 such that for all a ∈ A we

have 1a = a;
3 graded commutative: for all a,b ∈ A we have

ab = (−1)|a||b|ba and a2 = 0 when |a| is odd.

Examples
1 R is a DG R-algebra.
2 The Koszul complex K R(x1, · · · , xn) with x1, · · · , xn ∈ R is

a DG R-algebra.
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DG algebras and DG modules
Semiprojective DG A-Modules and DG Ext

Definition
Let A be a DG R-algebra. A differential graded module over A
(DG A-module for short) is an R-complex M with a chain map
µM : A⊗R M → M with am := µM(a⊗m) that is unitary and
associative. The map µM is the scalar product on M.

Example
If we consider R as a DG R-algebra, then the DG R-modules
are exactly the R-complexes.
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DG algebras and DG modules
Semiprojective DG A-Modules and DG Ext

Definition
Let A be a DG R-algebra, and let P be a DG A-module. P is
called semiprojective if HomA(P,−) preserves surjective
quasiisomorphisms.

Remark
Every homologically finite DG A-module M has a
semiprojective resolution P '−→ M.

Definition
Let A be a DG R-algebra, and let M,N be DG A-modules.
Given a semiprojective resolution P '−→ M, we set
ExtiA(M,N) =H−i(HomA(P,N)) for each integer i .
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Example

Let R = k [[x ]] where k is a field. Then we have the following
exact sequence of R-complexes and chain maps:

0 // R x · // R // k // 0

0

��

0

��

0

��
0 // R x · //

1
��

R //

1
��

k

1
��

// 0

0 // R x · //

��

R //

��

k //

��

0

0 0 0

Now we have Ext1R(k ,R) = 0, but YExt1R(k ,R) 6= 0.
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Theorem
Let A be a DG R-algebra, and let P be a semiprojective DG
A-module. Then for each DG A-module N we have

YExt1A(P,N) ∼= Ext1A(P,N).

Sketch of Proof. Let α ∈ YExt1A(P,N) be represented by the
exact sequence 0 −→ N −→ X −→ P −→ 0. This gives a
graded split exact sequence of A\-modules:

0 −→ N\ −→ X \ −→ P\ −→ 0.

Hence, α is isomorphic to a degreewise split sequence of the
form
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...

��

...

��

...

��
0 // Ni //

∂N
i

��

Ni ⊕ Pi //[
∂N

i λi

0 ∂P
i

]
��

Pi

∂P
i

��

// 0

0 // Ni−1 //

��

Ni−1 ⊕ Pi−1 //

��

Pi−1

��

// 0

...
...

...

Define the isomorphism by [α] 7−→
[
(λi)i∈N

]
.
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Theorem
Let A be a DG R-algebra, and let M,N be DG A-modules
where Hi(M) = 0 for all i > n and

N = 0 −→ Nn −→ Nn−1 −→ Nn−2 −→ · · ·

for an integer n. Set

tnM = 0 −→ Mn

Im ∂M
n+1

∂
M
n−→ Mn−1

∂M
n−1−→ Mn−2 −→ · · · .

Then the natural map

YExt1A(tnM,N)
Ψ−→ YExt1A(M,N)

is one-to-one.
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Sketch of Proof. Let α ∈ YExt1A(tnM,N) be represented by the
exact sequence 0 −→ N −→ X −→ tnM −→ 0. Consider the
pull-back diagram

β : 0 // N

=

��

// X̃ //

'
��

M //

'
��

0

α : 0 // N // X // tnM // 0

.

The Ψ is defined by the formula Ψ([α]) = [β]. It can be shown
that tnX̃ ∼= X and we have the following commutative diagram:
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β : 0 // N

=
��

//

��

X̃ //

'~~

��

M //

'
��

��

0

tnβ : 0 // N //

=

((

tnX̃ //

∼=

((

tnM //

=

((

0

α : 0 // N // X // tnM // 0

Hence, if β is split, then α is split. Therefore, Ψ is 1-1.
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Corollary
Let A be a DG R-algebra, and let C be a semiprojective
semidualizing DG A-module. Then YExt1A(tnC, tnC) = 0.
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