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Let R,S ,T be commutative rings, and let V be a T -module. A
connected sum diagram is a commutative diagram

R
εR

��
V

ιR

??

ιS ��

T

S

εS

??

We will let I = ker εR and J = ker εS .
The connected sum of the above diagram is the ring

R#TS = R ×T S/{(ιR(v), ιS(v)) | v ∈ V }.
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Theorem (AAM)

Let R and S be Gorenstein local rings of dimension d and T a
Cohen-Macaulay local ring of dim d. Let V be a canonical module
for T , and choose isomorphisms of V with ideals of R and S,
respectively, via

ιR(V ) = (0 : I ) ιS(V ) = (0 : J).

If I or J is nonzero, then R#TS is a Gorenstein local ring of
dimension d.
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Example

R = k[a, b]/(a2, b2), S = k[c , d ]/(c2, d2), T = k

Here, I , J are the socles of R and S, so

R#kS = k[a, b, c , d ]/(a2, b2, c2, d2, ac , ad , bc, bd , ab − cd)
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Topologically, this corresponds to the example: X = S2 × S2 = Y

Then H∗(X ) ∼= R and H∗(Y ) ∼= S , and

H∗(X #Y ) ∼= R#kS .

Question

Is there a similar topological construction that realizes the
connected sum construction for higher dimensional rings?
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Let ∆1 and ∆2 be simplicial complexes on a vertex set [m].

Let Z ⊂ ∆1 ∩∆2 be a subset such that O∆1∪∆2(Z ) ⊆ ∆1 ∩∆2

The connected sum of ∆1 and ∆2 along Z is:

∆1#Z∆2 := DelZ (∆1 ∪∆2)

This matches the definition of ’connected sum along a facet’ that
appears in Buchstaber-Panov.
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Example

F(∆1) = {abc, bcd}, F(∆2) = {abc, ace}, ∆ = ∆1 ∪∆2.
Let F(Z ) = {abc} = O∆(Z ).

Example

F(∆1) = {12, 25, 53, 34, 14}, F(∆2) = {25, 53, 23}.
F(Z ) = {25, 53}.
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Recall that given a simplicial complex ∆ on a vertex set [m], the
Stanley-Reisner ring of ∆ is the k-algebra

k[∆] = k[x1, . . . , xm]/〈{xi1 · · · xil | {i1, . . . , il} 6∈ ∆〉.
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Proposition

Let ∆1 and ∆2 be simplicial complexes on [m], W = ∆1 ∩∆2, and
Z ⊂W so that O(Z ) ⊂W . Then there is a commutative
diagram, with IZ = {xσ | σ ∈ Z}:

k[∆1]

##
IZ

==

!!

k[W ]

k[∆2]

;;

whose connected sum satisfies:

k[∆1]#IZ
k[W ]k[∆2] ∼= k[∆1#Z∆2].
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A connected sum ∆1#Z∆2 is called strong provided ∆1,∆2 and
W = ∆1 ∩∆2 are pure of the same dimension, and

Z = W \ (∆1 \W ) = W \ (∆2 \W )

Proposition

Assume that ∆1#Z∆2 is a strong connected sum, and that
∆1,∆2 and W = ∆1 ∩∆2 are pure of the same dimension.

If ∆1 and ∆2 are Gorenstein, and W is Cohen-Macaulay, then
k[∆1#Z∆2] is Gorenstein.
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Let Tm ∼= Cm, and let X be a space with a T -action.

Then one may define the T -equivariant cohomology of X to be the
cohomology of the space (ETm × X )/ ∼ where
(e, x) ∼ (eg , g−1x), for all e ∈ ETm, g ∈ T .

The T -equivariant cohomology of X is denoted H∗T (X ).
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An important example is that of X = pt. Then:

H∗T (pt) = H∗((ETm × pt)/ ∼)

= H∗(BTm)

= H∗((CP∞)m)

= k[x1, . . . , xm] (generated in degree two)

Therefore, given any T -space X , the equivariant projection
X → pt induces

H∗T (pt)→ H∗T (X )

therefore making H∗T (X ) into an algebra over k[x1, . . . , xm].
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Theorem (Davis-Januszkiewicz)

Given a simplicial complex ∆ on the vertex set [m], there is a
topological space Z∆ ⊆ (D2)m with an action of T such that

H∗T (Z∆) ∼= k(∆).
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If ∆ = ∆P for some simple polytope P, then one may define
ZP := Z∆P

.

For a simple polytope P, ZP is a manifold, and hence H∗T (ZP) is a
Gorenstein ring.
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Let P be a polytope, and P− and P+ the polytopes obtained by
cutting P by a general hyperplane. Let P0 = P− ∩ P+, and let o
be the vertex of ∆P− and ∆P+ corresponding to the hyperplane.
Then one has

k[∆P ] ∼= k[∆P−#Z∆P+ ]

where Z = O∆1∪∆2(o)

In particular, one has

H∗T (ZP) ∼= H∗T (ZP−)#
H∗
T (ZP0

)

H∗
T (ZP0

) H∗T (ZP+)

W. Frank Moore Connected Sums of Simplicial Complexes


	Connected Sum of Rings
	Topological Motivation
	Simplicial Construction
	Stanley-Reisner rings
	Equivariant Cohomology

