j-stretched ideals and Sally's Conjecture

Paolo Mantero

Purdue University

Joint work(s) with Yu Xie (U. of Notre Dame)

October 15, 2011

Based on the following papers:

P. Mantero and Y. Xie, On the Cohen-Macaulayness of the conormal module of an ideal (2010), 24 pages, submitted. Available at arxiv:1103.5518.

P. Mantero and Y. Xie, *j-stretched ideals and Sally's Conjecture* 22 pages, preprint.

Based on the following papers:

P. Mantero and Y. Xie, *On the Cohen-Macaulayness of the conormal module of an ideal* (2010), 24 pages, submitted. Available at arxiv:1103.5518.

P. Mantero and Y. Xie, *j-stretched ideals and Sally's Conjecture*, 22 pages, preprint.

Question 1 (Vasconcelos 1987, 1994)

Let R be a RLR and I be a perfect ideal that is generically a complete intersection (i.e., $I_{\mathfrak{p}}$ is a complete intersection $\forall \, \mathfrak{p} \in \mathrm{Ass}_R(R/I)$).

If I/I^2 (equivalently, R/I^2) is $CM \stackrel{?}{\Rightarrow} R/I$ is Gorenstein?

Answer is YES for:

- perfect prime ideals of height 2 (Herzog, 1978);
- licci ideals (Huneke and Ulrich, 1989);
- squarefree monomial ideals (Rinaldo, Terai and Yoshida, 2011).

Question 1 (Vasconcelos 1987, 1994)

Let R be a RLR and I be a perfect ideal that is generically a complete intersection (i.e., $I_{\mathfrak{p}}$ is a complete intersection $\forall \, \mathfrak{p} \in \mathrm{Ass}_R(R/I)$).

If I/I^2 (equivalently, R/I^2) is $CM \stackrel{?}{\Rightarrow} R/I$ is Gorenstein?

Answer is YES for:

- perfect prime ideals of height 2 (Herzog, 1978);
- licci ideals (Huneke and Ulrich, 1989);
- squarefree monomial ideals (Rinaldo, Terai and Yoshida, 2011).

Question 1 (Vasconcelos 1987, 1994)

Let R be a RLR and I be a perfect ideal that is generically a complete intersection (i.e., $I_{\mathfrak{p}}$ is a complete intersection $\forall \, \mathfrak{p} \in \mathrm{Ass}_R(R/I)$).

If I/I^2 (equivalently, R/I^2) is $CM \stackrel{?}{\Rightarrow} R/I$ is Gorenstein?

Answer is YES for:

- perfect prime ideals of height 2 (Herzog, 1978);
- licci ideals (Huneke and Ulrich, 1989);
- squarefree monomial ideals (Rinaldo, Terai and Yoshida, 2011).

Question 1 (Vasconcelos 1987, 1994)

Let R be a RLR and I be a perfect ideal that is generically a complete intersection (i.e., $I_{\mathfrak{p}}$ is a complete intersection $\forall \, \mathfrak{p} \in \mathrm{Ass}_R(R/I)$).

If I/I^2 (equivalently, R/I^2) is $CM \stackrel{?}{\Rightarrow} R/I$ is Gorenstein?

Answer is YES for:

- perfect prime ideals of height 2 (Herzog, 1978);
- licci ideals (Huneke and Ulrich, 1989);
- squarefree monomial ideals (Rinaldo, Terai and Yoshida, 2011).

Question 1 (Vasconcelos 1987, 1994)

Let R be a RLR and I be a perfect ideal that is generically a complete intersection (i.e., $I_{\mathfrak{p}}$ is a complete intersection $\forall \, \mathfrak{p} \in \mathrm{Ass}_R(R/I)$).

If I/I^2 (equivalently, R/I^2) is $CM \stackrel{?}{\Rightarrow} R/I$ is Gorenstein?

Answer is YES for:

- perfect prime ideals of height 2 (Herzog, 1978);
- licci ideals (Huneke and Ulrich, 1989);
- squarefree monomial ideals (Rinaldo, Terai and Yoshida, 2011).

Using tools from linkage theory, we proved the following

Proposition 2 (M-Xie 2010)

Question 1 can be reduced to the case of prime ideals.

Theorem(s) 3 (M-Xie 2010)

Question 1 holds true for.

(a) any monomial ideal I;

(b) <u>almost</u> every ideal I defining a short algebra;

(c) any ideal I such that R/I has multiplicity $\leq \operatorname{ecodim} R/I + 4$;

(d) any ideal I such that R/I is a stretched algebra.

Using tools from linkage theory, we proved the following

Proposition 2 (M-Xie 2010)

Question 1 can be reduced to the case of prime ideals.

Theorem(s) 3 (M-Xie 2010)

Question 1 holds true for:

- (a) any monomial ideal I;
- (b) <u>almost</u> every ideal I defining a short algebra;
- (c) any ideal I such that R/I has multiplicity $\leq \operatorname{ecodim} R/I + 4$;
- (d) any ideal I such that R/I is a stretched algebra.

Using tools from linkage theory, we proved the following

Proposition 2 (M-Xie 2010)

Question 1 can be reduced to the case of prime ideals.

Theorem(s) 3 (M-Xie 2010)

Question 1 holds true for:

- (a) any monomial ideal I;
- (b) <u>almost</u> every ideal I defining a short algebra;
- (c) any ideal I such that R/I has multiplicity $\leq \operatorname{ecodim} R/I + 4$;
- (d) any ideal I such that R/I is a stretched algebra.

Using tools from linkage theory, we proved the following

Proposition 2 (M-Xie 2010)

Question 1 can be reduced to the case of prime ideals.

Theorem(s) 3 (M-Xie 2010)

Question 1 holds true for:

- (a) any monomial ideal I;
- (b) <u>almost</u> every ideal I defining a short algebra;
- (c) any ideal I such that R/I has multiplicity $\leq \operatorname{ecodim} R/I + 4$;
- (d) any ideal I such that R/I is a stretched algebra.

Using tools from linkage theory, we proved the following

Proposition 2 (M-Xie 2010)

Question 1 can be reduced to the case of prime ideals.

Theorem(s) 3 (M-Xie 2010)

Question 1 holds true for:

- (a) any monomial ideal I;
- (b) <u>almost</u> every ideal I defining a short algebra;
- (c) any ideal I such that R/I has multiplicity $\leq \operatorname{ecodim} R/I + 4$;
- (d) any ideal I such that R/I is a stretched algebra

Using tools from linkage theory, we proved the following

Proposition 2 (M-Xie 2010)

Question 1 can be reduced to the case of prime ideals.

Theorem(s) 3 (M-Xie 2010)

Question 1 holds true for:

- (a) any monomial ideal I;
- (b) <u>almost</u> every ideal I defining a short algebra;
- (c) any ideal I such that R/I has multiplicity $\leq \operatorname{ecodim} R/I + 4$;
- (d) any ideal I such that R/I is a stretched algebra.

Using tools from linkage theory, we proved the following

Proposition 2 (M-Xie 2010)

Question 1 can be reduced to the case of prime ideals.

Theorem(s) 3 (M-Xie 2010)

Question 1 holds true for:

- (a) any monomial ideal I;
- (b) <u>almost</u> every ideal I defining a short algebra;
- (c) any ideal I such that R/I has multiplicity $\leq \operatorname{ecodim} R/I + 4$;
- (d) any ideal I such that R/I is a stretched algebra.

Stretched algebras

• An Artinian local ring (A, \mathfrak{n}) is **stretched** if \mathfrak{n}^2 is a principal ideal.

Example

Set $A_n = k[X, Y, Z]/(X^2, XY, XZ, YZ, Z^n - Y^2)$ with $n \ge 2 \Rightarrow A_n$ is a stretched algebra.

 An Artinian algebra is stretched iff its Hilbert function has the shape

 $1 \quad c \quad 1 \quad \dots \quad 1 \quad 0_{\longrightarrow}$

Stretched algebras

• An Artinian local ring (A, \mathfrak{n}) is **stretched** if \mathfrak{n}^2 is a principal ideal.

Example

Set $A_n = k[\![X,Y,Z]\!]/(X^2,XY,XZ,YZ,Z^n-Y^2)$ with $n \ge 2 \Rightarrow A_n$ is a stretched algebra.

 An Artinian algebra is stretched iff its Hilbert function has the shape

$$1 \quad c \quad 1 \quad \dots \quad 1 \quad 0 \longrightarrow$$

Stretched algebras

• An Artinian local ring (A, n) is **stretched** if n^2 is a principal ideal.

Example

Set $A_n = k[\![X,Y,Z]\!]/(X^2,XY,XZ,YZ,Z^n-Y^2)$ with $n \ge 2 \Rightarrow A_n$ is a stretched algebra.

 An Artinian algebra is stretched iff its Hilbert function has the shape

 $1 \quad c \quad 1 \quad \dots \quad 1 \quad 0 \longrightarrow$

Structure of Artinian stretched algebras

Theorem 4 (Sally 1981, Elias-Valla 2008, M-Xie 2010)

Let (R, \mathfrak{m}) be a RLR of dimension c with char $R/\mathfrak{m} \neq 2$. Let $I \subseteq \mathfrak{m}^2$ be an \mathfrak{m} -primary ideal with R/I stretched with $\mathfrak{m}_{R/I}^2 \neq 0$.

Write $\tau(R/I) = r + 1$ for some non negative integer r.

 $\Rightarrow \exists$ minimal generators x_1, \dots, x_c for \mathfrak{m} , and units u_{r+1}, \dots, u_{c-1} in R with

$$I=(x_1\mathfrak{m},\ldots,x_r\mathfrak{m})+J$$

where

$$J = (x_{r+i}x_{r+j} \mid 1 \le i < j \le c-r) + (x_c^s - u_{r+i}x_{r+i}^2 \mid 1 \le i \le c-r-1).$$

As a consequence, we have a complete description of I solely based on the Hilbert function and the type of R/I.

Structure of Artinian stretched algebras

Theorem 4 (Sally 1981, Elias-Valla 2008, M-Xie 2010)

Let (R, \mathfrak{m}) be a RLR of dimension c with char $R/\mathfrak{m} \neq 2$. Let $I \subseteq \mathfrak{m}^2$ be an \mathfrak{m} -primary ideal with R/I stretched with $\mathfrak{m}_{R/I}^2 \neq 0$.

Write $\tau(R/I) = r + 1$ for some non negative integer r.

 $\Rightarrow \exists$ minimal generators x_1, \dots, x_c for \mathfrak{m} , and units u_{r+1}, \dots, u_{c-1} in R with

$$I=(x_1\mathfrak{m},\ldots,x_r\mathfrak{m})+J$$

where

$$J = (x_{r+i}x_{r+j} \mid 1 \le i < j \le c-r) + (x_c^s - u_{r+i}x_{r+i}^2 \mid 1 \le i \le c-r-1).$$

As a consequence, we have a complete description of I solely based on the Hilbert function and the type of R/I.

An example

Example

If R/I is Artinian algebra with Hilbert function

$$1 \quad 3 \quad 1 \quad 0_{\longrightarrow}$$

and type $2 \Rightarrow \exists$ a regular system of parameters, x, y, z, for R, and a unit u of R with

$$I = (x^2, xy, xz, yz, x^3 - uy^2).$$

• A Cohen-Macaulay local ring (R, \mathfrak{m}) is **stretched** if there exists a minimal reduction J of \mathfrak{m} $(J\mathfrak{m}^n = \mathfrak{m}^{n+1})$ for some n so that R/J is Artinian stretched.

If R is a Cohen-Macaulay local ring, Abhyankar proved that

$$e(R) \ge \operatorname{ecodim} R + 1.$$

- If $e(R) = \operatorname{ecodim} R + 1$, then R has minimal multiplicity,
- If e(R) = ecodim R + 2, then R has almost minimal multiplicity.

Example

• A Cohen-Macaulay local ring (R, \mathfrak{m}) is **stretched** if there exists a minimal reduction J of \mathfrak{m} $(J\mathfrak{m}^n = \mathfrak{m}^{n+1})$ for some n so that R/J is Artinian stretched.

If R is a Cohen-Macaulay local ring, Abhyankar proved that

$$e(R) \ge \operatorname{ecodim} R + 1.$$

- If $e(R) = \operatorname{ecodim} R + 1$, then R has minimal multiplicity;
- If $e(R) = \operatorname{ecodim} R + 2$, then R has almost minimal multiplicity.

Example

• A Cohen-Macaulay local ring (R, \mathfrak{m}) is **stretched** if there exists a minimal reduction J of \mathfrak{m} $(J\mathfrak{m}^n = \mathfrak{m}^{n+1}$ for some n) so that R/J is Artinian stretched.

If R is a Cohen-Macaulay local ring, Abhyankar proved that

$$e(R) \ge \operatorname{ecodim} R + 1.$$

- If $e(R) = \operatorname{ecodim} R + 1$, then R has minimal multiplicity;
- If $e(R) = \operatorname{ecodim} R + 2$, then R has almost minimal multiplicity.

Example

• A Cohen-Macaulay local ring (R, \mathfrak{m}) is **stretched** if there exists a minimal reduction J of \mathfrak{m} $(J\mathfrak{m}^n = \mathfrak{m}^{n+1}$ for some n) so that R/J is Artinian stretched.

If R is a Cohen-Macaulay local ring, Abhyankar proved that

$$e(R) \ge \operatorname{ecodim} R + 1.$$

- If $e(R) = \operatorname{ecodim} R + 1$, then R has minimal multiplicity;
- If $e(R) = \operatorname{ecodim} R + 2$, then R has almost minimal multiplicity.

Example

Sally's Conjecture

Theorem 5

Let (R, \mathfrak{m}) be Cohen-Macaulay local ring.

- (a) (Sally 1979) If R has minimal multiplicity $\Rightarrow gr_{\mathfrak{m}}(R)$ is Cohen-Macaulay;
- (b) (Sally 1981, Rossi-Valla 1994, Wang 1994) If R has almost minimal multiplicity $\Rightarrow gr_{\mathfrak{m}}(R)$ is almost Cohen-Macaulay (i.e., depth $gr_{\mathfrak{m}}(R) \geq \dim R 1$).

Part (b) is known as Sally's Conjecture.

Sally's Conjecture

Theorem 5

Let (R, \mathfrak{m}) be Cohen-Macaulay local ring.

- (a) (Sally 1979) If R has minimal multiplicity \Rightarrow $gr_{\mathfrak{m}}(R)$ is Cohen-Macaulay;
- (b) (Sally 1981, Rossi-Valla 1994, Wang 1994) If R has almost minimal multiplicity $\Rightarrow gr_{\mathfrak{m}}(R)$ is almost Cohen-Macaulay (i.e., depth $gr_{\mathfrak{m}}(R) \geq \dim R 1$).

Part (b) is known as Sally's Conjecture.

Sally's Conjecture

Theorem 5

Let (R, \mathfrak{m}) be Cohen-Macaulay local ring.

- (a) (Sally 1979) If R has minimal multiplicity \Rightarrow $gr_{\mathfrak{m}}(R)$ is Cohen-Macaulay;
- (b) (Sally 1981, Rossi-Valla 1994, Wang 1994) If R has almost minimal multiplicity $\Rightarrow gr_{\mathfrak{m}}(R)$ is almost Cohen-Macaulay (i.e., depth $gr_{\mathfrak{m}}(R) \geq \dim R 1$).

Part (b) is known as Sally's Conjecture.

Let (R, \mathfrak{m}) be Cohen-Macaulay, I be an \mathfrak{m} -primary ideal, J be a minimal reduction of I ($JI^n = I^{n+1}$ for some n). Then, I is **stretched** if

- (i) $HF_{I/J}(2) \le 1$, and
- (ii) $I^2 \cap J = JI$.

- Rossi and Valla (2001) proved the m-primary analogue of Sally's Conjecture for stretched m-primary ideals, under some additional assumptions on the ideal.
- Problematic Remark: m-primary stretched ideals do <u>not</u> generalize ideals defining algebras with almost minimal multiplicity.

Let (R, \mathfrak{m}) be Cohen-Macaulay, I be an \mathfrak{m} -primary ideal, J be a minimal reduction of I ($JI^n = I^{n+1}$ for some n). Then, I is **stretched** if

- (i) $HF_{I/J}(2) \le 1$, and
- (ii) $I^2 \cap J = JI$

- Rossi and Valla (2001) proved the m-primary analogue of Sally's Conjecture for stretched m-primary ideals, under some additional assumptions on the ideal.
- Problematic Remark: m-primary stretched ideals do <u>not</u> generalize ideals defining algebras with almost minimal multiplicity.

Let (R, \mathfrak{m}) be Cohen-Macaulay, I be an \mathfrak{m} -primary ideal, J be a minimal reduction of I ($JI^n = I^{n+1}$ for some n). Then, I is **stretched** if

- (i) $HF_{I/J}(2) \le 1$, and
- (ii) $I^2 \cap J = JI$.

- Rossi and Valla (2001) proved the m-primary analogue of Sally's Conjecture for stretched m-primary ideals, under some additional assumptions on the ideal.
- Problematic Remark: m-primary stretched ideals do <u>not</u> generalize ideals defining algebras with almost minimal multiplicity.

Let (R, \mathfrak{m}) be Cohen-Macaulay, I be an \mathfrak{m} -primary ideal, J be a minimal reduction of I ($JI^n = I^{n+1}$ for some n). Then, I is **stretched** if

- (i) $HF_{I/J}(2) \le 1$, and
- (ii) $I^2 \cap J = JI$.

- Rossi and Valla (2001) proved the m-primary analogue of Sally's Conjecture for stretched m-primary ideals, under some additional assumptions on the ideal.
- Problematic Remark: m-primary stretched ideals do <u>not</u> generalize ideals defining algebras with almost minimal multiplicity.

Let (R, \mathfrak{m}) be Cohen-Macaulay, I be an \mathfrak{m} -primary ideal, J be a minimal reduction of I ($JI^n = I^{n+1}$ for some n). Then, I is **stretched** if

- (i) $HF_{I/J}(2) \le 1$, and
- (ii) $I^2 \cap J = JI$.

- Rossi and Valla (2001) proved the m-primary analogue of Sally's Conjecture for stretched m-primary ideals, under some additional assumptions on the ideal.
- Problematic Remark: m-primary stretched ideals do <u>not</u> generalize ideals defining algebras with almost minimal multiplicity.

Goals

The goals we achieve in our paper with Y. Xie are:

- provide a generalized notion of stretched ('j-stretched') such that
 - (1) it is well-defined even when $\dim R/I > 0$;
 - (2) it removes the intersection property
 - (3) it generalizes the 'higher dimensional version' of minimal and almost minimal multiplicity.
- Characterize the CM-ness of $gr_I(R)$ for these ideals.
- Prove Sally's Conjecture for this class of ideals, under some (somewhat expected) assumptions.

Our tools come from residual intersection theory and *j*-multiplicity theory (=the higher-dimensional version of Hilbert-Samuel multiplicity).

Goals

The goals we achieve in our paper with Y. Xie are:

- provide a generalized notion of stretched ('j-stretched') such that
 - (1) it is well-defined even when $\dim R/I > 0$;
 - (2) it removes the intersection property
 - (3) it generalizes the 'higher dimensional version' of minimal and almost minimal multiplicity.
- Characterize the CM-ness of $gr_I(R)$ for these ideals.
- Prove Sally's Conjecture for this class of ideals, under some (somewhat expected) assumptions.

Our tools come from residual intersection theory and *j*-multiplicity theory (=the higher-dimensional version of Hilbert-Samuel multiplicity).

Goals

The goals we achieve in our paper with Y. Xie are:

- provide a generalized notion of stretched ('j-stretched') such that
 - (1) it is well-defined even when $\dim R/I > 0$;
 - (2) it removes the intersection property.
 - (3) it generalizes the 'higher dimensional version' of minimal and almost minimal multiplicity.
- Characterize the CM-ness of $gr_I(R)$ for these ideals.
- Prove Sally's Conjecture for this class of ideals, under some (somewhat expected) assumptions.

Our tools come from residual intersection theory and *j*-multiplicity theory (=the higher-dimensional version of Hilbert-Samuel multiplicity).

The goals we achieve in our paper with Y. Xie are:

- provide a generalized notion of stretched ('j-stretched') such that
 - (1) it is well-defined even when $\dim R/I > 0$;
 - (2) it removes the intersection property.
 - (3) it generalizes the 'higher dimensional version' of minimal and almost minimal multiplicity.
- Characterize the CM-ness of $gr_I(R)$ for these ideals.
- Prove Sally's Conjecture for this class of ideals, under some (somewhat expected) assumptions.

The goals we achieve in our paper with Y. Xie are:

- provide a generalized notion of stretched ('j-stretched') such that
 - (1) it is well-defined even when $\dim R/I > 0$;
 - (2) it removes the intersection property.
 - (3) it generalizes the 'higher dimensional version' of minimal and almost minimal multiplicity.
- Characterize the CM-ness of $gr_I(R)$ for these ideals.
- Prove Sally's Conjecture for this class of ideals, under some (somewhat expected) assumptions.

The goals we achieve in our paper with Y. Xie are:

- provide a generalized notion of stretched ('j-stretched') such that
 - (1) it is well-defined even when $\dim R/I > 0$;
 - (2) it removes the intersection property.
 - (3) it generalizes the 'higher dimensional version' of minimal and almost minimal multiplicity.
- Characterize the CM-ness of $gr_I(R)$ for these ideals.
- Prove Sally's Conjecture for this class of ideals, under some (somewhat expected) assumptions.

The goals we achieve in our paper with Y. Xie are:

- provide a generalized notion of stretched ('j-stretched') such that
 - (1) it is well-defined even when $\dim R/I > 0$;
 - (2) it removes the intersection property.
 - (3) it generalizes the 'higher dimensional version' of minimal and almost minimal multiplicity.
- Characterize the CM-ness of $gr_I(R)$ for these ideals.
- Prove Sally's Conjecture for this class of ideals, under some (somewhat expected) assumptions.

j-stretched ideals

1-dimensional definition

Let R be a 1-dimensional Cohen-Macaulay local domain, I be a non zero ideal of R, and let J' be a general principal reduction of I. Then,

I is j-stretched
$$\iff \lambda(I^2/J'I + I^3) \le 1$$
.

Definition 6

Let R be a Noetherian local ring and I be an ideal with analytic spread $\ell(I) = \dim R = d$. I is j-stretched if, for a general minimal reduction $J = (x_1, \ldots, x_d)$ of I, one has

$$\lambda(I^2\overline{R}/x_dI\overline{R}+I^3\overline{R}) \le 1$$

where $\overline{R} = R/J_{d-1}$ and $J_{d-1} = (x_1, \dots, x_{d-1}) :_R I^{\infty}$.

j-stretched ideals

1-dimensional definition

Let R be a 1-dimensional Cohen-Macaulay local domain, I be a non zero ideal of R, and let J' be a general principal reduction of I. Then,

I is j-stretched
$$\iff \lambda(I^2/J'I + I^3) \le 1$$
.

Definition 6

Let R be a Noetherian local ring and I be an ideal with analytic spread $\ell(I) = \dim R = d$. I is j-stretched if, for a general minimal reduction $J = (x_1, \ldots, x_d)$ of I, one has

$$\lambda(I^2\overline{R}/x_dI\overline{R}+I^3\overline{R})\leq 1$$

where
$$\overline{R} = R/J_{d-1}$$
 and $J_{d-1} = (x_1, \dots, x_{d-1}) :_R I^{\infty}$.

Recall that *j*-multiplicity is the higher-dimensional version of Hilbert-Samuel multiplicity.

Remark. *I* has minimal/almost minimal *j*-multiplicity \Rightarrow *I* is *j*-stretched

Proposition 7

If I has the corresponding length property with respect to <u>one</u> minimal reduction \Rightarrow I is j-stretched.

Recall that *j*-multiplicity is the higher-dimensional version of Hilbert-Samuel multiplicity.

Remark. *I* has minimal/almost minimal *j*-multiplicity \Rightarrow *I* is *j*-stretched (while *I* with almost minimal multiplicity \Rightarrow *I* stretched!)

Proposition 7

If I has the corresponding length property with respect to <u>one</u> minimal reduction \Rightarrow I is j-stretched.

Recall that *j*-multiplicity is the higher-dimensional version of Hilbert-Samuel multiplicity.

Remark. *I* has minimal/almost minimal *j*-multiplicity \Rightarrow *I* is *j*-stretched (while *I* with almost minimal multiplicity \Rightarrow *I* stretched!)

Proposition 7

If I has the corresponding length property with respect to <u>one</u> minimal reduction \Rightarrow I is j-stretched.

Recall that *j*-multiplicity is the higher-dimensional version of Hilbert-Samuel multiplicity.

Remark. *I* has minimal/almost minimal *j*-multiplicity \Rightarrow *I* is *j*-stretched (while *I* with almost minimal multiplicity \Rightarrow *I* stretched!)

Proposition 7

If I has the corresponding length property with respect to <u>one</u> minimal reduction \Rightarrow I is j-stretched.

j-stretched ideals vs. stretched ideals

Theorem 8 (M-Xie)

Let (R, \mathfrak{m}) be a local Cohen-Macaulay ring, and I be an \mathfrak{m} -primary ideal. If I is stretched \Rightarrow I is j-stretched.

Therefore, j-stretched ideals generalize <u>simultaneously</u> ideals having minimal/almost minimal j-multiplicity, and \mathfrak{m} -primary stretched ideals.

j-stretched ideals vs. stretched ideals

Theorem 8 (M-Xie)

Let (R, \mathfrak{m}) be a local Cohen-Macaulay ring, and I be an \mathfrak{m} -primary ideal. If I is stretched \Rightarrow I is j-stretched.

Therefore, j-stretched ideals generalize <u>simultaneously</u> ideals having minimal/almost minimal j-multiplicity, and \mathfrak{m} -primary stretched ideals.

Under some residual assumptions, we can characterize the j-stretched ideals for which $gr_I(R)$ is CM.

Theorem 9 (M-Xie)

Let (R, \mathfrak{m}) be a local CM ring with $|R/\mathfrak{m}| = \infty$, and let I be a j-stretched ideal. Let $J = (x_1, \ldots, x_d)$ be a general minimal reduction of I. Assume either

TFAE:

- (a) $G = \operatorname{gr}_I(R)$ is Cohen-Macaulay;
- (b) $I^{K+1} = JI^{K}$
- (c) $I^{K+1} = HI^K$ for some minimal reduction H of I;

where $K = s_J(I)$, is the index of nilpotency of I with respect to J.

Under some residual assumptions, we can characterize the j-stretched ideals for which $gr_I(R)$ is CM.

Theorem 9 (M-Xie)

Let (R, \mathfrak{m}) be a local CM ring with $|R/\mathfrak{m}| = \infty$, and let I be a j-stretched ideal. Let $J = (x_1, \ldots, x_d)$ be a general minimal reduction of I. Assume either

- I is m-primary and $(x_1, ..., x_{d-1}) \cap I^2 = (x_1, ..., x_{d-1})I$, or
- $\ell(I) = \dim R = d$, I satisfies G_d , AN_{d-2}^- , $\operatorname{depth}(R/I) \ge 1$.

- (a) $G = gr_I(R)$ is Cohen-Macaulay;
- (b) $I^{K+1} = JI^K$,
- (c) $I^{K+1} = HI^K$ for some minimal reduction H of I; where $K = s_1(I)$, is the index of nilpotency of I with respect to

Under some residual assumptions, we can characterize the j-stretched ideals for which $gr_I(R)$ is CM.

Theorem 9 (M-Xie)

Let (R, \mathfrak{m}) be a local CM ring with $|R/\mathfrak{m}| = \infty$, and let I be a j-stretched ideal. Let $J = (x_1, \ldots, x_d)$ be a general minimal reduction of I. Assume either

- I is \mathfrak{m} -primary and $(x_1, ..., x_{d-1}) \cap I^2 = (x_1, ..., x_{d-1})I$, or
- $\ell(I) = \dim R = d$, I satisfies G_d , AN_{d-2}^- , $\operatorname{depth}(R/I) \geq 1$.

- (a) $G = gr_I(R)$ is Cohen-Macaulay;
- (b) $I^{K+1} = JI^K$,
- (c) $I^{K+1} = HI^K$ for some minimal reduction H of I;
- where $K = s_J(I)$, is the index of nilpotency of I with respect to J.

Under some residual assumptions, we can characterize the j-stretched ideals for which $gr_I(R)$ is CM.

Theorem 9 (M-Xie)

Let (R, \mathfrak{m}) be a local CM ring with $|R/\mathfrak{m}| = \infty$, and let I be a j-stretched ideal. Let $J = (x_1, \ldots, x_d)$ be a general minimal reduction of I. Assume either

- I is \mathfrak{m} -primary and $(x_1, ..., x_{d-1}) \cap I^2 = (x_1, ..., x_{d-1})I$, or
- $\ell(I) = \dim R = d$, I satisfies G_d , AN_{d-2}^- , $\operatorname{depth}(R/I) \geq 1$.

- (a) $G = gr_I(R)$ is Cohen-Macaulay;
- (b) $I^{K+1} = JI^{K}$
- (c) $I^{K+1} = HI^K$ for some minimal reduction H of I; where $K = s_J(I)$, is the index of nilpotency of I with respect to J.

Under some residual assumptions, we can characterize the j-stretched ideals for which $gr_I(R)$ is CM.

Theorem 9 (M-Xie)

Let (R, \mathfrak{m}) be a local CM ring with $|R/\mathfrak{m}| = \infty$, and let I be a j-stretched ideal. Let $J = (x_1, \ldots, x_d)$ be a general minimal reduction of I. Assume either

- I is \mathfrak{m} -primary and $(x_1, ..., x_{d-1}) \cap I^2 = (x_1, ..., x_{d-1})I$, or
- $\ell(I) = \dim R = d$, I satisfies G_d , AN_{d-2}^- , $\operatorname{depth}(R/I) \geq 1$.

- (a) $G = gr_I(R)$ is Cohen-Macaulay;
- (b) $I^{K+1} = JI^K$;
- (c) $I^{K+1} = HI^K$ for some minimal reduction H of I; where $K = s_J(I)$, is the index of nilpotency of I with respect to J

Under some residual assumptions, we can characterize the j-stretched ideals for which $gr_I(R)$ is CM.

Theorem 9 (M-Xie)

Let (R, \mathfrak{m}) be a local CM ring with $|R/\mathfrak{m}| = \infty$, and let I be a j-stretched ideal. Let $J = (x_1, \ldots, x_d)$ be a general minimal reduction of I. Assume either

- I is \mathfrak{m} -primary and $(x_1, ..., x_{d-1}) \cap I^2 = (x_1, ..., x_{d-1})I$, or
- $\ell(I) = \dim R = d$, I satisfies G_d , AN_{d-2}^- , $\operatorname{depth}(R/I) \geq 1$.

TFAE:

- (a) $G = gr_I(R)$ is Cohen-Macaulay;
- (b) $I^{K+1} = JI^K$;
- (c) $I^{K+1} = HI^K$ for some minimal reduction H of I;

where $K = s_J(I)$, is the index of nilpotency of I with respect to J.

Under some residual assumptions, we can characterize the j-stretched ideals for which $gr_I(R)$ is CM.

Theorem 9 (M-Xie)

Let (R, \mathfrak{m}) be a local CM ring with $|R/\mathfrak{m}| = \infty$, and let I be a j-stretched ideal. Let $J = (x_1, \ldots, x_d)$ be a general minimal reduction of I. Assume either

- I is \mathfrak{m} -primary and $(x_1, ..., x_{d-1}) \cap I^2 = (x_1, ..., x_{d-1})I$, or
- $\ell(I) = \dim R = d$, I satisfies G_d , AN_{d-2}^- , $\operatorname{depth}(R/I) \geq 1$.

- (a) $G = gr_I(R)$ is Cohen-Macaulay;
- (b) $I^{K+1} = JI^{K}$;
- (c) $I^{K+1} = HI^K$ for some minimal reduction H of I; where $K = s_J(I)$, is the index of nilpotency of I with respect to J.

The next result proves Sally's Conjecture for *j*-stretched ideals, generalizing to any dimension several classical results.

Theorem 10 (M-Xie)

Let (R, \mathfrak{m}) be a local CM ring with $|R/\mathfrak{m}| = \infty$, and I be a j-stretched ideal. Let J be a general minimal reduction of I. Assume either

- I is m-primary and $(x_1, ..., x_{d-1}) \cap I^2 = (x_1, ..., x_{d-1})I$, or
- $\ell(I) = \dim R = d$, I satisfies G_d , AN_{d-2}^- , $\operatorname{depth}(R/I) \ge 1$.

there exists a positive integer p such that

(a) $\lambda(J \cap l^{j+1}/Jl^j) = 0$ for every $j \le p-1$;

(b) $\lambda(I^{p+1}/JI^p) \leq 1$

 \Rightarrow depth $(\operatorname{gr}_I(R)) \ge \dim R - 1$ (i.e., $\operatorname{gr}_I(R)$ is almost Cohen-Macaulay).

The next result proves Sally's Conjecture for j-stretched ideals, generalizing to any dimension several classical results.

Theorem 10 (M-Xie)

Let (R, \mathfrak{m}) be a local CM ring with $|R/\mathfrak{m}| = \infty$, and I be a j-stretched ideal. Let J be a general minimal reduction of I. Assume either

- I is \mathfrak{m} -primary and $(x_1, ..., x_{d-1}) \cap I^2 = (x_1, ..., x_{d-1})I$, or
- $\ell(I) = \dim R = d$, I satisfies G_d , AN_{d-2}^- , $\operatorname{depth}(R/I) \geq 1$.

- (a) $\lambda(J \cap I^{j+1}/JI^{j}) = 0$ for every $j \le p-1$; (b) $\lambda(I^{p+1}/JI^{p}) \le 1$:
- \Rightarrow depth $(\operatorname{gr}_I(R)) \ge \dim R 1$ (i.e., $\operatorname{gr}_I(R)$ is almost Cohen-Macaulay).

The next result proves Sally's Conjecture for j-stretched ideals, generalizing to any dimension several classical results.

Theorem 10 (M-Xie)

Let (R, \mathfrak{m}) be a local CM ring with $|R/\mathfrak{m}| = \infty$, and I be a j-stretched ideal. Let J be a general minimal reduction of I. Assume either

- I is \mathfrak{m} -primary and $(x_1, ..., x_{d-1}) \cap I^2 = (x_1, ..., x_{d-1})I$, or
- $\ell(I) = \dim R = d$, I satisfies G_d , AN_{d-2}^- , $\operatorname{depth}(R/I) \ge 1$.

- (a) $\lambda(J \cap I^{j+1}/JI^j) = 0$ for every $j \leq p-1$;
- (b) $\lambda(I^{p+1}/JI^p) \leq 1$;
- \Rightarrow depth $(\operatorname{gr}_I(R)) \ge \dim R 1$ (i.e., $\operatorname{gr}_I(R)$ is almost Cohen-Macaulay).

The next result proves Sally's Conjecture for *j*-stretched ideals, generalizing to any dimension several classical results.

Theorem 10 (M-Xie)

Let (R, \mathfrak{m}) be a local CM ring with $|R/\mathfrak{m}| = \infty$, and I be a j-stretched ideal. Let J be a general minimal reduction of I. Assume either

- I is \mathfrak{m} -primary and $(x_1, ..., x_{d-1}) \cap I^2 = (x_1, ..., x_{d-1})I$, or
- $\ell(I) = \dim R = d$, I satisfies G_d , AN_{d-2}^- , $\operatorname{depth}(R/I) \ge 1$.

- (a) $\lambda(J \cap I^{j+1}/JI^j) = 0$ for every $j \leq p-1$;
- (b) $\lambda(I^{p+1}/JI^p) \leq 1$;
- \Rightarrow depth $(\operatorname{gr}_I(R)) \ge \dim R 1$ (i.e., $\operatorname{gr}_I(R)$ is almost Cohen-Macaulay).

The next result proves Sally's Conjecture for *j*-stretched ideals, generalizing to any dimension several classical results.

Theorem 10 (M-Xie)

Let (R, \mathfrak{m}) be a local CM ring with $|R/\mathfrak{m}| = \infty$, and I be a j-stretched ideal. Let J be a general minimal reduction of I. Assume either

- I is \mathfrak{m} -primary and $(x_1, ..., x_{d-1}) \cap I^2 = (x_1, ..., x_{d-1})I$, or
- $\ell(I) = \dim R = d$, I satisfies G_d , AN_{d-2}^- , $\operatorname{depth}(R/I) \ge 1$.

- (a) $\lambda(J \cap I^{j+1}/JI^j) = 0$ for every $j \leq p-1$;
- (b) $\lambda(I^{p+1}/JI^p) \leq 1$;
- \Rightarrow depth $(\operatorname{gr}_I(R)) \ge \dim R 1$ (i.e., $\operatorname{gr}_I(R)$ is almost Cohen-Macaulay).

Example 11

Let
$$R = k[[t^4, t^6, t^{11}, t^{13}]]$$
, $\mathfrak{m} = (t^4, t^6, t^{11}, t^{13})$, $I = (t^4, t^6, t^{11})$.

- I is an m-primary ideal,
- $J \cap I^2 \neq JI$ for every minimal reduction J of I. In particular, I is not stretched.
- I is j-stretched on R.

Remark. Therefore, *j*-stretched \Rightarrow stretched.

Example 11

Let
$$R = k[[t^4, t^6, t^{11}, t^{13}]]$$
, $\mathfrak{m} = (t^4, t^6, t^{11}, t^{13})$, $I = (t^4, t^6, t^{11})$.

- I is an m-primary ideal,
- $J \cap I^2 \neq JI$ for every minimal reduction J of I. In particular, I is not stretched.
- I is j-stretched on R.

Remark. Therefore, *j*-stretched \Rightarrow stretched.

Example 11

Let
$$R = k[[t^4, t^6, t^{11}, t^{13}]]$$
, $\mathfrak{m} = (t^4, t^6, t^{11}, t^{13})$, $I = (t^4, t^6, t^{11})$.

- I is an m-primary ideal,
- $J \cap I^2 \neq JI$ for every minimal reduction J of I. In particular, I is not stretched.
- I is j-stretched on R.

Remark. Therefore, *j*-stretched \Rightarrow stretched.

Example 11

Let
$$R = k[[t^4, t^6, t^{11}, t^{13}]]$$
, $\mathfrak{m} = (t^4, t^6, t^{11}, t^{13})$, $I = (t^4, t^6, t^{11})$.

- I is an m-primary ideal,
- $J \cap I^2 \neq JI$ for every minimal reduction J of I. In particular, I is not stretched.
- I is j-stretched on R.

Remark. Therefore, *j*-stretched \Rightarrow stretched.

Example 11

Let
$$R = k[[t^4, t^6, t^{11}, t^{13}]]$$
, $\mathfrak{m} = (t^4, t^6, t^{11}, t^{13})$, $I = (t^4, t^6, t^{11})$.

- I is an m-primary ideal,
- $J \cap I^2 \neq JI$ for every minimal reduction J of I. In particular, I is not stretched.
- I is j-stretched on R.

Remark. Therefore, *j*-stretched \Rightarrow stretched.

Example 11

Let
$$R = k[[t^4, t^6, t^{11}, t^{13}]]$$
, $\mathfrak{m} = (t^4, t^6, t^{11}, t^{13})$, $I = (t^4, t^6, t^{11})$.

- I is an m-primary ideal,
- $J \cap I^2 \neq JI$ for every minimal reduction J of I. In particular, I is not stretched.
- I is j-stretched on R.

Remark. Therefore, *j*-stretched \Rightarrow stretched.

Example 11

Let
$$R = k[[t^4, t^6, t^{11}, t^{13}]]$$
, $\mathfrak{m} = (t^4, t^6, t^{11}, t^{13})$, $I = (t^4, t^6, t^{11})$.

- I is an m-primary ideal,
- $J \cap I^2 \neq JI$ for every minimal reduction J of I. In particular, I is not stretched.
- I is j-stretched on R.

Remark. Therefore, *j*-stretched \Rightarrow stretched.