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The Datai

e kis afield,
e R=K[x,y],

e | is a height 2 ideal oR minimally generated by 3 formsg;, g>, g3 of
the same positive degree

e ¢ is a homogeneous Hilbert-Burch matrix fog, g2,93]. (S0, is a
3 x 2 matrix, the columns ap generate the kernel ¢d1, g2, 93] and the
signed 2x 2 minors of¢ are equal to a unit timeg, gz, g3].)

e the entries ofp in column | have degred; with d; < d, and
di+d>=d.




The objects of interes.

e the symmetric algebra of

B R[Tl,Tz,Tg]
Y = (T T 7300

e the Rees algebra of

R()=Ralal?oPg--- =R,

e and especially,

,‘Zl:ker(Sym(I)%Q{( )).

The idealq of Sym(l) is thedefining ideal of Rees algebra laf




The geometric significance of: I

e The datags, g», 3 gives rise to a morphist¥ : Pt — P2, with

W(a) = [91(a) : 92(a) : ga(a)]
for all g € P.
e The image otV is a plane curve” of degread.

e One way to learn about the singularities@©fs to study

the graph ot =T = {(q, W(q)) € P! x P?| q e P'}.

e Notice that” = Bi-Proj® (1) *; s0,4 = | (I")Sym(l).

e On this slidek is algebraically closédandW is birational onto its
Image.




The approach of looking &t (or 4) to learn about the singularitie

on C bears fruit:

e See [Cox, ,Polini,Ulrich] “A study of singularities on rational cueg
via syzygies”, available: now on the arXiv, eventually e tlemoirs.

e Much of [CKPU] is about parameterized plane curgesf even degree
d with a singularity of multiplicity=d/2.

e Today | talk about th@lgebra that corresponds to parameterized plang
curves( with a singularity of multiplicity> d /2. (The parity ofd is not
longer relevant.)

e That is, | insist thatl; < dy and thatp has a generalized zero in col. 1.

e See the “General Lemma” in [CKPU] or Song-Chen-Goldman
(Computer Aided Geometric Design) for the translation frGeometry
to Algebra.




“The bi-graded structure of Symmetric AIgebraI:”

R[Tla T27 T3]

(f1,f2)
[ f1, f2] = [T1, T2, T30, is abi-gradedcomplete intersectian

with

e The symmetric algebra Sy =

e RecallR=Kk|x,y|. Letm = (x,y)Rthe homogeneous maximal idealRf

o LetS= k[Tl,Tz,Tg] andB = R®kS= k[X, Y, T1,T2,T3].

e Give x andy degreg(1,0) and eacl; degree(0,1).
e The Synil)-ideal 4 is readily seen to equal the Syhyideal

H (Sym(1)) = 0 igym1) m.




The ultimate goal iﬂ

e t0 describeB-structure of4.

e But | don’t know that (unlesd; = 2).

e So instead | will tell you the structure ¢t >4, 1 )

o first as arSmodule, (Thisis called heorem.)

e then as &-module. (This is calle@orollary.)

Recall: S= k[T, T2, T3], B=K[x,y, T1, T2, T3], degx = degy = (1,0),
degTi = (0,1).




Theorem [KPU]'

If d1 < d> and$ has a generalized zero in column 1, then
A~4,-1+) IS @ freeSmodule.Furthermore,

d
1. Ifdy—1<i <dp—1, thend,, ~ @ S(—i,—a), where
(=1

~|d+dp—1—1
dp

W and

2. I1fdy—1<i<d-—2, thenq )~ §(—i,—2)% 1.
3.1fd-1<i,thenq;,, =0.




The following table records th&module structure of:.

Asdy-1.0 ~ P S(—(i, ).

So, the minimal homogeneous basis for the fferodule 4;; j) has
ni.j generators of bi-degreg, j).




d
.
rd
d
di—r
LaIJ 1
LaIJ—)\-I-l dq di -1 dy—2
& -a 1 2
1
3 1
2 di—-1 oF] di—1 d;—2
di—-1 Adq+r—1 Adq+r Adq+r+1 do—2 do—1 do do+1

The generator degreesfor thefree Smodule,‘zl<>o|1 1,4)-

e Definer by d = d1L j +r,with0o<r <d;—1.
e The position(i, j) = ()\dl +, Ldlj A\) appears in the table if and only if
1<AL Ld%J — 2. (These are the “exterior corner points”.)
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We describe, in words, the transition of the generator asgr

to 4;_, from 4;, beginning at the right side of the table.

e The moduleﬂl@*) =0ford—1<1.

e If d —1<i<d-2,thenthe generators &; ., are concentrated in the
unique degree 2 and rasig_1 . Is rank4; ,) + 1. The actual generators

of 4;>q4,-1,+) can be explicitly described by the technique of linkage.

e In the ranged; — 1 <i < dy—1, the rank ot%; ,, remains constant af
and the generators di; . live in two degrees, or, occasionally, only one
degree. As one looks from right to left, one free rank one samhof
lowest shift in 4;; , Is replaced by a free rank one summand with shift
one higher in4;_y ,).




TheB module structure of >, 1 ,:

Corollary [KPU] I
As aB-module, -4 _1 . Is minimally generated

by the union

ak-basis forﬂ(dl_l’[%w

Uak-basis fOr/{Zl(dl_l,L%J)

U U ak-basis forﬁl(
1§)\§Ladij—2

)\dl—l_rv L%J _)\) .




TheB module structure af >4, _1 ), Part 2:

e One direction of the proof is obvious. The other directiosaame
amusing linear algebra ovkrandS. (Remember, we do not know
formulas for any of these basis elements!)

e Conjecture We conjecture that if < d; — 1, then4; ;) = 0 for

| < L%J- In particular, we conjecture that the basis elements fiiim
exterior corner pointsare part of a minimal generating set for the
B-moduleA4.




d
.
i
d
dq—r
LaIJ 1
[é%J—A+1 dq dq—1 dq—2
L%ﬂ—k 1 2
3 1
2 dl—l dl dl—l d1—2
dl—l )\dl—H’—l )\dl—i-l’ )\dl—l-l’—i—l d2—2 d2—l d2 d2+1

The generator degreesfor the free Smodule 4>q, 1 .-
e Definer byd =di || +r, with0O<r <d;—1.

e The position(i, j) = (Ady +, L%J — A) appears in the table if and only if
1<AL Ld%J — 2. (These are the “exterior corner points”.)

12-1



Some ideas from the proof of Theorer:

e The mathematics that sets the project in motion is due tontoa
[Formes d’inertie et@sultant: un formulaire, Adv. Math. 126 (1997),
119-250] who proved that the multiplication map

Ai ) @SYM) (d—2-i ) — Ad—24) = S(—2) (*)

gives a perfect pairing d-modules.

e The “Sylvester form” of bi-degre&d — 2, 2) is a basis for the free
SmoduleAq_> .. (Wolmer Vasconcelos would call this form the
“Jacobian dual 0§”.)

e Jouanolou uses “Morley forms” to exhibit dual bases for tloelaies of
(*).

e We met (*) in a paper Busposted on the arXiv on December 17, 20074.




Some ideas from the proof of Theorem, ParIII:

e Almost immediately after reading Bé's paper we understood when
dy = 2 or whend; = dy, = 3.

e The perfect pairing

A ) @ SYM(1) (d—2—i «) — Ad—2.4) = S—2) ()

shows that th&module structure off;; ) is completely determined by
the Smodule structure of Syth)q_»_i ). The symmetric algebra
Sym(l) is a complete intersection defined by the regular sequénde

(Recall:[fy, fo] = [T1, T2, T3]0);

so, theS-module structure of Syfh)q_»_; depends on the relationship
betweerd — 2 —1, dq, andd,.




Some ideas from the proof of Theorem, Part'l:

e The part of Synil ) that corresponds téd-4, 1, under the duality of (*),
Is Sym(l)<q,—1. There is no contribution fronf, to theS-module
Sym(l)<q,—1 in the bi-homogeneous-resolution of Synil ). So,
basically,we may ignoref>,.

e On the other hand, the hypothesis that the first colungn luds a
generalized zero allows us to make the critical calculabi@r a subring
U of S, whereU is a polynomial ring inwo variables

e In the proof of Theorem wealecomposaarious bi-graded complexes
overR®kU into theirR-graded components and thelirgraded
components.




Some ideas from the proof of Theorem, Part.\/:

e Ultimately,

the critical calculation is to producel@aver bound for the

degrees of the syzygied aU-module homomorphism.

e Once (k) is carried out, themlilbert series trickdead to a complete
description of all of the syzygy degrees of the relevant nhesiu

e During the process of proving this result we were inspire@by
classification ofmatrices whose entries are linear forms fronaue to
Weierstrass (in the non-singular case) and Kronecker @méneral
case); see Gantmacher “Matrix Theory”, Chapter XII.




