

**The bi-graded structure of Symmetric Algebras
with applications to Rees rings**

AMS meeting at the University of Nebraska
October, 2011

Andy Kustin
University of South Carolina

This talk is about joint work with Claudia Polini and Bernd Ulrich.

The Data:

- k is a field,
- $R = k[x, y]$,
- I is a height 2 ideal of R minimally generated by 3 forms, g_1, g_2, g_3 of the same positive degree d ,
- φ is a homogeneous Hilbert-Burch matrix for $[g_1, g_2, g_3]$. (So, φ is a 3×2 matrix, the columns of φ generate the kernel of $[g_1, g_2, g_3]$ and the signed 2×2 minors of φ are equal to a unit times $[g_1, g_2, g_3]$.)
- the entries of φ in column j have degree d_j with $d_1 \leq d_2$ and $d_1 + d_2 = d$.

The objects of interest:

- the symmetric algebra of I :

$$\text{Sym}(I) = \frac{R[T_1, T_2, T_3]}{I_1([T_1, T_2, T_3]\varphi)},$$

- the Rees algebra of I :

$$\mathcal{R}(I) = R \oplus I \oplus I^2 \oplus I^3 \oplus \cdots = R[It],$$

- and especially,

$$\mathcal{A} = \ker \left(\text{Sym}(I) \longrightarrow \mathcal{R}(I) \right).$$

The ideal \mathcal{A} of $\text{Sym}(I)$ is the **defining ideal of Rees algebra of I** .

The geometric significance of \mathcal{A} :

- The data g_1, g_2, g_3 gives rise to a morphism $\Psi: \mathbb{P}^1 \rightarrow \mathbb{P}^2$, with

$$\Psi(q) = [g_1(q) : g_2(q) : g_3(q)],$$

for all $q \in \mathbb{P}^1$.

- The image of Ψ is a plane curve \mathcal{C} of degree d^\dagger .
- One way to learn about the singularities of \mathcal{C} is to study

the graph of $\Psi = \Gamma = \{(q, \Psi(q)) \in \mathbb{P}^1 \times \mathbb{P}^2 \mid q \in \mathbb{P}^1\}$.

- Notice that $\Gamma = \text{Bi-Proj } \mathcal{R}(I)^\ddagger$; so, $\mathcal{A} = I(\Gamma)\text{Sym}(I)$.
- On this slide k is algebraically closed[‡] and Ψ is birational[†] onto its image.

The approach of looking at Γ (or \mathcal{A}) to learn about the singularities on \mathcal{C} bears fruit:

- See [Cox, __, Polini, Ulrich] “A study of singularities on rational curves via syzygies”, available: now on the arXiv, eventually in the Memoirs.
- Much of [CKPU] is about parameterized plane curves \mathcal{C} of even degree d with a singularity of multiplicity $= d/2$.
- Today I talk about the **algebra** that corresponds to parameterized plane curves \mathcal{C} with a singularity of multiplicity $> d/2$. (The parity of d is not longer relevant.)
- That is, I insist that $d_1 < d_2$ and that φ has a generalized zero in col. 1.
- See the “General Lemma” in [CKPU] or Song-Chen-Goldman (Computer Aided Geometric Design) for the translation from Geometry to Algebra.

“The bi-graded structure of Symmetric Algebras:”

- The symmetric algebra $\text{Sym}(I) = \frac{R[T_1, T_2, T_3]}{(f_1, f_2)}$, with $[f_1, f_2] = [T_1, T_2, T_3]\varphi$, is a **bi-graded** complete intersection.
- Recall $R = k[x, y]$. Let $\mathfrak{m} = (x, y)R$ the homogeneous maximal ideal of R .
- Let $S = k[T_1, T_2, T_3]$ and $B = R \otimes_k S = k[x, y, T_1, T_2, T_3]$.
- Give x and y degree $(1, 0)$ and each T_i degree $(0, 1)$.
- The $\text{Sym}(I)$ -ideal \mathcal{A} is readily seen to equal the $\text{Sym}(I)$ -ideal

$$H_{\mathfrak{m}}^0(\text{Sym}(I)) = 0 :_{\text{Sym}(I)} \mathfrak{m}^\infty.$$

The ultimate goal is:

- to describe B -structure of \mathcal{A} .
- But I don't know that (unless $d_1 = 2$).
- So instead I will tell you the structure of $\mathcal{A}_{(\geq d_1 - 1, *)}$
- first as an S -module, (This is called **Theorem.**)
- then as a B -module. (This is called **Corollary.**)

Recall: $S = k[T_1, T_2, T_3]$, $B = k[x, y, T_1, T_2, T_3]$, $\deg x = \deg y = (1, 0)$, $\deg T_i = (0, 1)$.

Theorem [KPU]

If $d_1 < d_2$ and φ has a generalized zero in column 1, then

$\mathcal{A}_{(\geq d_1-1,*)}$ is a free S -module. Furthermore,

1. If $d_1 - 1 \leq i \leq d_2 - 1$, then $\mathcal{A}_{(i,*)} \simeq \bigoplus_{\ell=1}^{d_1} S(-i, -a_\ell)$, where

$$\left\lfloor \frac{d + d_1 - 1 - i}{d_1} \right\rfloor = a_1 \leq \cdots \leq a_{d_1} = \left\lceil \frac{d + d_1 - 1 - i}{d_1} \right\rceil \quad \text{and}$$

$$\sum_{\ell=1}^{d_1} a_\ell = d + d_1 - 1 - i.$$

2. If $d_2 - 1 \leq i \leq d - 2$, then $\mathcal{A}_{(i,*)} \simeq S(-i, -2)^{d-1-i}$.

3. If $d - 1 \leq i$, then $\mathcal{A}_{(i,*)} = 0$.

The following table records the S -module structure of:

$$\mathcal{A}_{(\geq d_1-1,*)} \simeq \bigoplus S(-(i,j))^{n_{i,j}}.$$

So, the minimal homogeneous basis for the free S -module $\mathcal{A}_{(i,j)}$ has $n_{i,j}$ generators of bi-degree (i,j) .

$\lceil \frac{d}{d_1} \rceil$	r	\dots										
$\lfloor \frac{d}{d_1} \rfloor$	$d_1 - r$	\dots										
\vdots												
$\lfloor \frac{d}{d_1} \rfloor - \lambda + 1$		\dots	d_1	$d_1 - 1$	$d_1 - 2$	\dots						
$\lfloor \frac{d}{d_1} \rfloor - \lambda$				1	2	\dots						
\vdots												
3						\dots	1					
2						\dots	$d_1 - 1$	d_1	$d_1 - 1$	$d_1 - 2$	\dots	1
	$d_1 - 1$	\dots	$\lambda d_1 + r - 1$	$\lambda d_1 + r$	$\lambda d_1 + r + 1$	\dots	$d_2 - 2$	$d_2 - 1$	d_2	$d_2 + 1$	\dots	$d - 2$

The generator degrees for the free S -module $\mathcal{A}_{(\geq d_1 - 1, *)}$.

- Define r by $d = d_1 \lfloor \frac{d}{d_1} \rfloor + r$, with $0 \leq r \leq d_1 - 1$.
- The position $(i, j) = (\lambda d_1 + r, \lfloor \frac{d}{d_1} \rfloor - \lambda)$ appears in the table if and only if $1 \leq \lambda \leq \lfloor \frac{d}{d_1} \rfloor - 2$. (These are the “exterior corner points”.)

We describe, in words, the transition of the generator degrees
to \mathcal{A}_{i-1} from \mathcal{A}_i , beginning at the right side of the table.

- The module $\mathcal{A}_{(i,*)} = 0$ for $d - 1 \leq i$.
- If $d_2 - 1 \leq i \leq d - 2$, then the generators of $\mathcal{A}_{(i,*)}$ are concentrated in the unique degree 2 and $\text{rank } \mathcal{A}_{(i-1,*)}$ is $\text{rank } \mathcal{A}_{(i,*)} + 1$. The actual generators of $\mathcal{A}_{(\geq d_2 - 1,*)}$ can be explicitly described by the technique of linkage.
- In the range $d_1 - 1 \leq i \leq d_2 - 1$, the rank of $\mathcal{A}_{(i,*)}$ remains constant at d_1 and the generators of $\mathcal{A}_{(i,*)}$ live in two degrees, or, occasionally, only one degree. As one looks from right to left, one free rank one summand of **lowest** shift in $\mathcal{A}_{(i,*)}$ is replaced by a free rank one summand with shift **one** higher in $\mathcal{A}_{(i-1,*)}$.

The B module structure of $\mathcal{A}_{(\geq d_1-1,*)}$:

Corollary [KPU]

As a B -module, $\mathcal{A}_{(\geq d_1-1,*)}$ is minimally generated by the union

$$\left\{ \begin{array}{l} \text{a } k\text{-basis for } \mathcal{A}_{(d_1-1, \lceil \frac{d}{d_1} \rceil)} \\ \cup \text{a } k\text{-basis for } \mathcal{A}_{(d_1-1, \lfloor \frac{d}{d_1} \rfloor)} \\ \cup \bigcup_{1 \leq \lambda \leq \lfloor \frac{d}{d_1} \rfloor - 2} \text{a } k\text{-basis for } \mathcal{A}_{(\lambda d_1 + r, \lfloor \frac{d}{d_1} \rfloor - \lambda)}. \end{array} \right.$$

The B module structure of $\mathcal{A}_{(\geq d_1-1,*)}$, Part 2:

- One direction of the proof is obvious. The other direction is some amusing linear algebra over k and S . (Remember, we do not know formulas for any of these basis elements!)
- **Conjecture:** We conjecture that if $j < d_1 - 1$, then $\mathcal{A}_{(i,j)} = 0$ for $i < \lfloor \frac{d}{d_1} \rfloor$. In particular, we conjecture that the basis elements from “**the exterior corner points**” are part of a minimal generating set for the B -module \mathcal{A} .

$\lceil \frac{d}{d_1} \rceil$	\mathbf{r}	\dots										
$\lfloor \frac{d}{d_1} \rfloor$	$\mathbf{d}_1 - \mathbf{r}$	\dots										
\vdots												
$\lfloor \frac{d}{d_1} \rfloor - \lambda + 1$		\dots	d_1	$d_1 - 1$	$d_1 - 2$	\dots						
$\lfloor \frac{d}{d_1} \rfloor - \lambda$				$\mathbf{1}$	2	\dots						
\vdots												
3						\dots	1					
2						\dots	$d_1 - 1$	d_1	$d_1 - 1$	$d_1 - 2$	\dots	1
	$d_1 - 1$	\dots	$\lambda d_1 + r - 1$	$\lambda d_1 + r$	$\lambda d_1 + r + 1$	\dots	$d_2 - 2$	$d_2 - 1$	d_2	$d_2 + 1$	\dots	$d - 2$

The generator degrees for the free S -module $\mathcal{A}_{(\geq d_1 - 1, *)}$.

- Define r by $d = d_1 \lfloor \frac{d}{d_1} \rfloor + r$, with $0 \leq r \leq d_1 - 1$.
- The position $(i, j) = (\lambda d_1 + r, \lfloor \frac{d}{d_1} \rfloor - \lambda)$ appears in the table if and only if $1 \leq \lambda \leq \lfloor \frac{d}{d_1} \rfloor - 2$. (These are the “exterior corner points”.)

Some ideas from the proof of Theorem:

- The mathematics that sets the project in motion is due to Jouanolou [Formes d'inertie et résultant: un formulaire, Adv. Math. 126 (1997), 119–250] who proved that the multiplication map

$$\mathcal{A}_{(i,*)} \otimes \text{Sym}(I)_{(d-2-i,*)} \longrightarrow \mathcal{A}_{(d-2,*)} \simeq S(-2) \quad (*)$$

gives a perfect pairing of S -modules.

- The “Sylvester form” of bi-degree $(d - 2, 2)$ is a basis for the free S -module $A_{(d-2,*)}$. (Wolmer Vasconcelos would call this form the “Jacobian dual of φ ”.)
- Jouanolou uses “Morley forms” to exhibit dual bases for the modules of $(*)$.
- We met $(*)$ in a paper Busé posted on the arXiv on December 17, 2007.

Some ideas from the proof of Theorem, Part II:

- Almost immediately after reading Busé's paper we understood \mathcal{A} when $d_1 = 2$ or when $d_1 = d_2 = 3$.
- The perfect pairing

$$\mathcal{A}_{(i,*)} \otimes \text{Sym}(I)_{(d-2-i,*)} \longrightarrow \mathcal{A}_{(d-2,*)} \simeq S(-2) \quad (*)$$

shows that the S -module structure of $\mathcal{A}_{(i,*)}$ is completely determined by the S -module structure of $\text{Sym}(I)_{(d-2-i,*)}$. The symmetric algebra $\text{Sym}(I)$ is a complete intersection defined by the regular sequence f_1, f_2

(Recall: $[f_1, f_2] = [T_1, T_2, T_3]\varphi$);

so, the S -module structure of $\text{Sym}(I)_{d-2-i}$ depends on the relationship between $d - 2 - i$, d_1 , and d_2 .

Some ideas from the proof of Theorem, Part III:

- The part of $\text{Sym}(I)$ that corresponds to $\mathcal{A}_{\geq d_1-1}$, under the duality of (*), is $\text{Sym}(I)_{\leq d_2-1}$. There is no contribution from f_2 to the S -module $\text{Sym}(I)_{\leq d_2-1}$ in the bi-homogeneous B -resolution of $\text{Sym}(I)$. So, basically, **we may ignore f_2** .
- On the other hand, the hypothesis that the first column of φ has a generalized zero allows us to make the critical calculation over a subring U of S , where U is a polynomial ring in **two variables**.
- In the proof of Theorem we **decompose** various bi-graded complexes over $R \otimes_k U$ into their R -graded components and their U -graded components.

Some ideas from the proof of Theorem, Part IV:

- Ultimately,

the critical calculation is to produce a **lower bound for the**
degrees of the syzygies of a U -module homomorphism. (★)

- Once (★) is carried out, then **Hilbert series tricks** lead to a complete description of all of the syzygy degrees of the relevant modules.
- During the process of proving this result we were inspired by a classification of **matrices whose entries are linear forms from U** due to Weierstrass (in the non-singular case) and Kronecker (in the general case); see Gantmacher “Matrix Theory”, Chapter XII.