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The Data:

• k is a field,

• R = k[x,y],

• I is a height 2 ideal ofR minimally generated by 3 forms,g1,g2,g3 of

the same positive degreed,

• ϕ is a homogeneous Hilbert-Burch matrix for[g1,g2,g3]. (So,ϕ is a

3×2 matrix, the columns ofϕ generate the kernel of[g1,g2,g3] and the

signed 2×2 minors ofϕ are equal to a unit times[g1,g2,g3].)

• the entries ofϕ in column j have degreed j with d1 ≤ d2 and

d1+d2 = d.
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The objects of interest:

• the symmetric algebra ofI:

Sym(I) =
R[T1,T2,T3]

I1([T1,T2,T3]ϕ)
,

• the Rees algebra ofI:

R (I) = R⊕ I ⊕ I2⊕ I3⊕·· ·= R[It],

• and especially,

A = ker
(

Sym(I) // // R (I)
)

.

The idealA of Sym(I) is thedefining ideal of Rees algebra ofI.

3



The geometric significance ofA :

• The datag1,g2,g3 gives rise to a morphismΨ : P1 → P
2, with

Ψ(q) = [g1(q) : g2(q) : g3(q)],

for all q ∈ P
1.

• The image ofΨ is a plane curveC of degreed†.

• One way to learn about the singularities ofC is to study

the graph ofΨ = Γ = {(q,Ψ(q)) ∈ P
1×P

2 | q ∈ P
1}.

• Notice thatΓ = Bi-ProjR (I) ‡; so,A = I(Γ)Sym(I).

• On this slidek is algebraically closed‡ andΨ is birational† onto its

image.
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The approach of looking atΓ (orA) to learn about the singularities

onC bears fruit:

• See [Cox, ,Polini,Ulrich] “A study of singularities on rational curves
via syzygies”, available: now on the arXiv, eventually in the Memoirs.

• Much of [CKPU] is about parameterized plane curvesC of even degree
d with a singularity of multiplicity= d/2.

• Today I talk about thealgebra that corresponds to parameterized plane
curvesC with a singularity of multiplicity> d/2. (The parity ofd is not
longer relevant.)

• That is, I insist thatd1 < d2 and thatϕ has a generalized zero in col. 1.

• See the “General Lemma” in [CKPU] or Song-Chen-Goldman
(Computer Aided Geometric Design) for the translation fromGeometry
to Algebra.
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“The bi-graded structure of Symmetric Algebras:”

• The symmetric algebra Sym(I) =
R[T1,T2,T3]

( f1, f2)
, with

[ f1, f2] = [T1,T2,T3]ϕ, is abi-gradedcomplete intersection.

• RecallR = k[x,y]. Letm= (x,y)R the homogeneous maximal ideal ofR.

• Let S = k[T1,T2,T3] andB = R⊗k S = k[x,y,T1,T2,T3].

• Give x andy degree(1,0) and eachTi degree(0,1).

• The Sym(I)-idealA is readily seen to equal the Sym(I)-ideal

H0
m
(Sym(I)) = 0 :Sym(I) m

∞.
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The ultimate goal is:

• to describeB-structure ofA .

• But I don’t know that (unlessd1 = 2).

• So instead I will tell you the structure ofA(≥d1−1,∗)

• first as anS-module, (This is calledTheorem.)

• then as aB-module. (This is calledCorollary.)

Recall:S = k[T1,T2,T3], B = k[x,y,T1,T2,T3], degx = degy = (1,0),

degTi = (0,1).
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Theorem [KPU]

If d1 < d2 andϕ has a generalized zero in column 1, then

A(≥d1−1,∗) is a freeS-module.Furthermore,

1. If d1−1≤ i ≤ d2−1, thenA(i,∗) ≃
d1⊕
ℓ=1

S(−i,−aℓ), where

⌊

d +d1−1− i
d1

⌋

= a1 ≤ ·· · ≤ ad1 =

⌈

d +d1−1− i
d1

⌉

and

d1

∑
ℓ=1

aℓ = d +d1−1− i.

2. If d2−1≤ i ≤ d −2, thenA(i,∗) ≃ S(−i,−2)d−1−i.

3. If d −1≤ i, thenA(i,∗) = 0.
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The following table records theS-module structure of:

A(≥d1−1,∗) ≃
⊕

S(−(i, j))ni, j .

So, the minimal homogeneous basis for the freeS-moduleA(i, j) has

ni, j generators of bi-degree(i, j).
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⌈ d
d1

⌉ r ···

⌊ d
d1

⌋ d1−r ···

...
⌊ d

d1
⌋−λ+1 ··· d1 d1−1 d1−2 ···

⌊ d
d1

⌋−λ 1 2 ···

...
3 ··· 1

2 ··· d1−1 d1 d1−1 d1−2 ··· 1

d1−1 ··· λd1+r−1 λd1+r λd1+r+1 ··· d2−2 d2−1 d2 d2+1 ··· d−2

The generator degrees for the free S-module A(≥d1−1,∗).

• Definer by d = d1⌊
d
d1
⌋+ r, with 0≤ r ≤ d1−1.

• The position(i, j) = (λd1 + r,⌊ d
d1
⌋− λ) appears in the table if and only if

1≤ λ ≤ ⌊ d
d1
⌋−2. (These are the “exterior corner points”.)
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We describe, in words, the transition of the generator degrees

to Ai−1 from Ai, beginning at the right side of the table.

• The moduleA(i,∗) = 0 for d −1≤ i.

• If d2−1≤ i ≤ d−2, then the generators ofA(i,∗) are concentrated in the

unique degree 2 and rankA(i−1,∗) is rankA(i,∗)+1. The actual generators

of A(≥d2−1,∗) can be explicitly described by the technique of linkage.

• In the ranged1−1≤ i ≤ d2−1, the rank ofA(i,∗) remains constant atd1

and the generators ofA(i,∗) live in two degrees, or, occasionally, only one

degree. As one looks from right to left, one free rank one summand of

lowest shift inA(i,∗) is replaced by a free rank one summand with shift

one higher inA(i−1,∗).
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TheB module structure ofA(≥d1−1,∗):

Corollary [KPU]
As aB-module,A(≥d1−1,∗) is minimally generated

by the union


























a k-basis forA(d1−1,⌈ d
d1

⌉)

∪a k-basis forA(d1−1,⌊ d
d1

⌋)

∪
⋃

1≤λ≤⌊ d
d1

⌋−2

a k-basis forA(λd1+r,⌊ d
d1

⌋−λ).
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TheB module structure ofA(≥d1−1,∗), Part 2:

• One direction of the proof is obvious. The other direction issome

amusing linear algebra overk andS. (Remember, we do not know

formulas for any of these basis elements!)

• Conjecture:We conjecture that ifj < d1−1, thenA(i, j) = 0 for

i < ⌊ d
d1
⌋. In particular, we conjecture that the basis elements from“the

exterior corner points”are part of a minimal generating set for the

B-moduleA .
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Some ideas from the proof of Theorem:

• The mathematics that sets the project in motion is due to Jouanolou

[Formes d’inertie et ŕesultant: un formulaire, Adv. Math. 126 (1997),

119–250] who proved that the multiplication map

A(i,∗)⊗Sym(I)(d−2−i,∗) −→ A(d−2,∗) ≃ S(−2) (*)

gives a perfect pairing ofS-modules.

• The “Sylvester form” of bi-degree(d −2,2) is a basis for the free

S-moduleA(d−2,∗). (Wolmer Vasconcelos would call this form the

“Jacobian dual ofϕ”.)

• Jouanolou uses “Morley forms” to exhibit dual bases for the modules of

(*).

• We met (*) in a paper Buśe posted on the arXiv on December 17, 2007.
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Some ideas from the proof of Theorem, Part II:

• Almost immediately after reading Busé’s paper we understoodA when

d1 = 2 or whend1 = d2 = 3.

• The perfect pairing

A(i,∗)⊗Sym(I)(d−2−i,∗) −→ A(d−2,∗) ≃ S(−2) (*)

shows that theS-module structure ofA(i,∗) is completely determined by

theS-module structure of Sym(I)(d−2−i,∗). The symmetric algebra

Sym(I) is a complete intersection defined by the regular sequencef1, f2

(Recall: [ f1, f2] = [T1,T2,T3]ϕ);

so, theS-module structure of Sym(I)d−2−i depends on the relationship

betweend −2− i, d1, andd2.
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Some ideas from the proof of Theorem, Part III:

• The part of Sym(I) that corresponds toA≥d1−1, under the duality of (*),

is Sym(I)≤d2−1. There is no contribution fromf2 to theS-module

Sym(I)≤d2−1 in the bi-homogeneousB-resolution of Sym(I). So,

basically,we may ignoref2.

• On the other hand, the hypothesis that the first column ofϕ has a

generalized zero allows us to make the critical calculationover a subring

U of S, whereU is a polynomial ring intwo variables.

• In the proof of Theorem wedecomposevarious bi-graded complexes

overR⊗k U into theirR-graded components and theirU-graded

components.
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Some ideas from the proof of Theorem, Part IV:

• Ultimately,

the critical calculation is to produce alower bound for the

degrees of the syzygiesof aU-module homomorphism.
(⋆)

• Once (⋆) is carried out, thenHilbert series trickslead to a complete

description of all of the syzygy degrees of the relevant modules.

• During the process of proving this result we were inspired bya

classification ofmatrices whose entries are linear forms fromU due to

Weierstrass (in the non-singular case) and Kronecker (in the general

case); see Gantmacher “Matrix Theory”, Chapter XII.
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